Search results
Results from the WOW.Com Content Network
The celestial poles are also the poles of the celestial equatorial coordinate system, meaning they have declinations of +90 degrees and −90 degrees (for the north and south celestial poles, respectively). Despite their apparently fixed positions, the celestial poles in the long term do not actually remain permanently fixed against the ...
The poles of astronomical bodies are determined based on their axis of rotation in relation to the celestial poles of the celestial sphere. Astronomical bodies include stars, planets, dwarf planets and small Solar System bodies such as comets and minor planets (e.g., asteroids), as well as natural satellites and minor-planet moons.
The poles are located at ±90° from the fundamental plane. The primary direction is the starting point of the longitudinal coordinates. The origin is the zero distance point, the "center of the celestial sphere", although the definition of celestial sphere is ambiguous about the definition of its center point.
In astronomy, the meridian is the great circle passing through the celestial poles, as well as the zenith and nadir of an observer's location. Consequently, it contains also the north and south points on the horizon, and it is perpendicular to the celestial equator and horizon.
The colatitude is most useful in astronomy because it refers to the zenith distance of the celestial poles. For example, at latitude 42°N, for Polaris (approximately on the North celestial pole), the distance from the zenith (overhead point) to Polaris is 90 − 42 = 48°.
Galactic latitude is positive towards the north galactic pole, with a plane passing through the Sun and parallel to the galactic equator being 0°, whilst the poles are ±90°. [3] Based on this definition, the galactic poles and equator can be found from spherical trigonometry and can be precessed to other epochs; see the table.
More exactly, sidereal time is the angle, measured along the celestial equator, from the observer's meridian to the great circle that passes through the March equinox (the northern hemisphere's vernal equinox) and both celestial poles, and is usually expressed in hours, minutes, and seconds.
Perpendicular to the ecliptic are the ecliptic poles, the north ecliptic pole being the pole north of the equator. Of the two fundamental planes, the ecliptic is closer to unmoving against the background stars, its motion due to planetary precession being roughly 1/100 that of the celestial equator. [24]