Search results
Results from the WOW.Com Content Network
Substituting into the Clapeyron equation =, we can obtain the Clausius–Clapeyron equation [8]: 509 = for low temperatures and pressures, [8]: 509 where is the specific latent heat of the substance. Instead of the specific, corresponding molar values (i.e. L {\displaystyle L} in kJ/mol and R = 8.31 J/(mol⋅K)) may also be used.
Latent heat can be understood as hidden energy which is supplied or extracted to change the state of a substance without changing its temperature or pressure. This includes the latent heat of fusion (solid to liquid), the latent heat of vaporization (liquid to gas) and the latent heat of sublimation (solid to gas). [1] [2]
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
Quantity (common name/s) (Common) symbol/s Defining equation SI unit Dimension Temperature gradient: No standard symbol K⋅m −1: ΘL −1: Thermal conduction rate, thermal current, thermal/heat flux, thermal power transfer
The heat content of an ideal gas is independent of pressure (or volume), but the heat content of real gases varies with pressure, hence the need to define the state for the gas (real or ideal) and the pressure. Note that for some thermodynamic databases such as for steam, the reference temperature is 273.15 K (0 °C).
Enthalpies of melting and boiling for pure elements versus temperatures of transition, demonstrating Trouton's rule. In thermodynamics, the enthalpy of fusion of a substance, also known as (latent) heat of fusion, is the change in its enthalpy resulting from providing energy, typically heat, to a specific quantity of the substance to change its state from a solid to a liquid, at constant pressure.
The moist static energy is a thermodynamic variable that describes the state of an air parcel, and is similar to the equivalent potential temperature. [1] The moist static energy is a combination of a parcel's enthalpy due to an air parcel's internal energy and energy required to make room for it, its potential energy due to its height above the surface, and the latent energy due to water ...
is the heat flux from the gas to the droplet surface (J.s −1) is the latent heat of evaporation of the species considered (J.kg −1) Analytical expressions for the droplet vaporization rate, ˙, and for the heat flux are now derived. A single, pure, component droplet is considered and the gas phase is assumed to behave as an ideal gas.