enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Goal programming - Wikipedia

    en.wikipedia.org/wiki/Goal_programming

    Goal programming is used to perform three types of analysis: Determine the required resources to achieve a desired set of objectives. Determine the degree of attainment of the goals with the available resources. Providing the best satisfying solution under a varying amount of resources and priorities of the goals.

  3. Multi-objective optimization - Wikipedia

    en.wikipedia.org/wiki/Multi-objective_optimization

    Multi-objective optimization or Pareto optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, or multiattribute optimization) is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously.

  4. Multi-objective linear programming - Wikipedia

    en.wikipedia.org/wiki/Multi-objective_linear...

    Based on these goals, the set of all efficient (extreme) points can be seen to be the solution of MOLP. This type of solution concept is called decision set based. [3] It is not compatible with an optimal solution of a linear program but rather parallels the set of all optimal solutions of a linear program (which is more difficult to determine).

  5. Branch and bound - Wikipedia

    en.wikipedia.org/wiki/Branch_and_bound

    Using a heuristic, find a solution x h to the optimization problem. Store its value, B = f(x h). (If no heuristic is available, set B to infinity.) B will denote the best solution found so far, and will be used as an upper bound on candidate solutions. Initialize a queue to hold a partial solution with none of the variables of the problem assigned.

  6. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    The satisfiability problem, also called the feasibility problem, is just the problem of finding any feasible solution at all without regard to objective value. This can be regarded as the special case of mathematical optimization where the objective value is the same for every solution, and thus any solution is optimal.

  7. Optimization problem - Wikipedia

    en.wikipedia.org/wiki/Optimization_problem

    The goal is then to find for some instance x an optimal solution, that is, a feasible solution y with (,) = {(, ′): ′ ()}. For each combinatorial optimization problem, there is a corresponding decision problem that asks whether there is a feasible solution for some particular measure m 0 .

  8. Dynamic programming - Wikipedia

    en.wikipedia.org/wiki/Dynamic_programming

    If the solution to any problem can be formulated recursively using the solution to its sub-problems, and if its sub-problems are overlapping, then one can easily memoize or store the solutions to the sub-problems in a table (often an array or hashtable in practice). Whenever we attempt to solve a new sub-problem, we first check the table to see ...

  9. Travelling salesman problem - Wikipedia

    en.wikipedia.org/wiki/Travelling_salesman_problem

    Solution of a travelling salesman problem: the black line shows the shortest possible loop that connects every red dot. In the theory of computational complexity, the travelling salesman problem (TSP) asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the ...