Search results
Results from the WOW.Com Content Network
The Schläfli symbol is a recursive description, [1]: 129 starting with {p} for a p-sided regular polygon that is convex.For example, {3} is an equilateral triangle, {4} is a square, {5} a convex regular pentagon, etc.
It has Schläfli symbol of {6,3} or t{3,6} (as a truncated triangular tiling). English mathematician John Conway called it a hextille. The internal angle of the hexagon is 120 degrees, so three hexagons at a point make a full 360 degrees.
A hexagram or sexagram is a six-pointed geometric star figure with the Schläfli symbol {6/2}, 2{3}, or {{3}}. The term is used to refer to a compound figure of two equilateral triangles. The intersection is a regular hexagon. The hexagram is part of an infinite series of shapes which are compounds of two n-dimensional simplices.
A regular hexagon has Schläfli symbol {6} [2] and can also be constructed as a truncated equilateral triangle, t{3}, which alternates two types of edges. A regular hexagon is defined as a hexagon that is both equilateral and equiangular. It is bicentric, meaning that it is both cyclic (has a circumscribed circle) and tangential (has an ...
Norman Johnson calls it a dion [4] and gives it the Schläfli symbol { }. Although trivial as a polytope, it appears as the edges of polygons and other higher dimensional polytopes. [5] It is used in the definition of uniform prisms like Schläfli symbol { }×{p}, or Coxeter diagram as a Cartesian product of a line segment and a regular polygon ...
This tiling represents a hyperbolic kaleidoscope of 6 mirrors defining a regular hexagon fundamental domain. This symmetry by orbifold notation is called *333333 with 6 order-3 mirror intersections. In Coxeter notation can be represented as [6 * ,6], removing two of three mirrors (passing through the hexagon center) in the [6,6] symmetry.
The Schläfli symbol of the order-4 hexagonal tiling honeycomb is {6,3,4}. Since that of the hexagonal tiling is {6,3}, this honeycomb has four such hexagonal tilings meeting at each edge. Since the Schläfli symbol of the octahedron is {3,4}, the vertex figure of this honeycomb is an octahedron. Thus, eight hexagonal tilings meet at each ...
This tiling represents a hyperbolic kaleidoscope of 6 mirrors defining a regular hexagon fundamental domain. This symmetry by orbifold notation is called *222222 with 6 order-2 mirror intersections. In Coxeter notation can be represented as [6 * ,4], removing two of three mirrors (passing through the hexagon center).