enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler's constant - Wikipedia

    en.wikipedia.org/wiki/Euler's_constant

    Euler's constant (sometimes called the Euler–Mascheroni constant) is a mathematical constant, usually denoted by the lowercase Greek letter gamma (γ), defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:

  3. List of mathematical constants - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_constants

    A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]

  4. Harmonic number - Wikipedia

    en.wikipedia.org/wiki/Harmonic_number

    The harmonic number with = ⌊ ⌋ (red line) with its asymptotic limit + ⁡ (blue line) where is the Euler–Mascheroni constant.. In mathematics, the n-th harmonic number is the sum of the reciprocals of the first n natural numbers: [1] = + + + + = =.

  5. Particular values of the gamma function - Wikipedia

    en.wikipedia.org/wiki/Particular_values_of_the...

    where is the Euler–Mascheroni constant and denotes asymptotic equivalence. It is unknown whether these constants are transcendental in general, but Γ(⁠ 1 / 3 ⁠) and Γ(⁠ 1 / 4 ⁠) were shown to be transcendental by G. V. Chudnovsky.

  6. Digamma function - Wikipedia

    en.wikipedia.org/wiki/Digamma_function

    Euler's product formula for the gamma function, combined with the functional equation and an identity for the Euler–Mascheroni constant, yields the following expression for the digamma function, valid in the complex plane outside the negative integers (Abramowitz and Stegun 6.3.16): [1]

  7. Gyromagnetic ratio - Wikipedia

    en.wikipedia.org/wiki/Gyromagnetic_ratio

    An example for such a particle [9] is the spin ⁠ 1 / 2 ⁠ companion to spin ⁠ 3 / 2 ⁠ in the D (½,1) ⊕ D (1,½) representation space of the Lorentz group. This particle has been shown to be characterized by g = ⁠− + 2 / 3 ⁠ and consequently to behave as a truly quadratic fermion.

  8. Beta function - Wikipedia

    en.wikipedia.org/wiki/Beta_function

    The relationship between the two functions is like that between the gamma function and its generalization the incomplete gamma function. For positive integer a and b, the incomplete beta function will be a polynomial of degree a + b - 1 with rational coefficients.

  9. Dirichlet beta function - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_beta_function

    For every odd positive integer +, the following equation holds: [3] (+) = ()!() +where is the n-th Euler Number.This yields: =,() =,() =,() =For the values of the Dirichlet beta function at even positive integers no elementary closed form is known, and no method has yet been found for determining the arithmetic nature of even beta values (similarly to the Riemann zeta function at odd integers ...