Search results
Results from the WOW.Com Content Network
The Decimal class in the standard library module decimal has user definable precision and limited mathematical operations (exponentiation, square root, etc. but no trigonometric functions). The Fraction class in the module fractions implements rational numbers.
Rather than storing values as a fixed number of bits related to the size of the processor register, these implementations typically use variable-length arrays of digits. Arbitrary precision is used in applications where the speed of arithmetic is not a limiting factor, or where precise results with very large numbers are required.
A real number is computable if its digit sequence can be produced by some algorithm or Turing machine. The algorithm takes an integer as input and produces the -th digit of the real number's decimal expansion as output. (The decimal expansion of a only refers to the digits following the decimal point.)
In mathematics, a cube root of a number x is a number y that has the given number as its third power; that is =. The number of cube roots of a number depends on the number system that is considered. Every nonzero real number x has exactly one real cube root that is denoted x 3 {\textstyle {\sqrt[{3}]{x}}} and called the real cube root of x or ...
A square root of a number x is a number r which, when squared, becomes x: =. Every positive real number has two square roots, one positive and one negative. For example, the two square roots of 25 are 5 and −5. The positive square root is also known as the principal square root, and is denoted with a radical sign:
Newton's method is one of many known methods of computing square roots. Given a positive number a, the problem of finding a number x such that x 2 = a is equivalent to finding a root of the function f(x) = x 2 − a. The Newton iteration defined by this function is given by
Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.
A natural number is a sociable Dudeney root if it is a periodic point for ,, where , = for a positive integer , and forms a cycle of period . A Dudeney root is a sociable Dudeney root with k = 1 {\displaystyle k=1} , and a amicable Dudeney root is a sociable Dudeney root with k = 2 {\displaystyle k=2} .