Search results
Results from the WOW.Com Content Network
An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.
Newton's method assumes the function f to have a continuous derivative. Newton's method may not converge if started too far away from a root. However, when it does converge, it is faster than the bisection method; its order of convergence is usually quadratic whereas the bisection method's is linear. Newton's method is also important because it ...
Newton's method uses curvature information (i.e. the second derivative) to take a more direct route. In calculus, Newton's method (also called Newton–Raphson) is an iterative method for finding the roots of a differentiable function, which are solutions to the equation =.
Anderson's iterative method, which uses a least squares approach to the Jacobian. [9] Schubert's or sparse Broyden algorithm – a modification for sparse Jacobian matrices. [10] The Pulay approach, often used in density functional theory. [11] [12] A limited memory method by Srivastava for the root finding problem which only uses a few recent ...
Quasi-Newton methods are a generalization of the secant method to find the root of the first derivative for multidimensional problems. In multiple dimensions the secant equation is under-determined , and quasi-Newton methods differ in how they constrain the solution, typically by adding a simple low-rank update to the current estimate of the ...
Householder's method applied to the real-valued function f(x) is the same as applying Newton's method + = ′ to find the zeros of the function: = | (/) | /. In particular, d = 1 gives Newton's method unmodified and d = 2 gives Halley's method.
A root-finding algorithm is a numerical method or algorithm for finding a value x such that f(x) = 0, for a given function f. Here, x is a single real number. Root-finding algorithms are studied in numerical analysis.
Alternatively, Horner's method and Horner–Ruffini method also refers to a method for approximating the roots of polynomials, described by Horner in 1819. It is a variant of the Newton–Raphson method made more efficient for hand calculation by application of Horner's rule. It was widely used until computers came into general use around 1970.