Search results
Results from the WOW.Com Content Network
A reversible reaction is a reaction in which the conversion of reactants to products and the conversion of products to reactants occur simultaneously. [1] A and B can react to form C and D or, in the reverse reaction, C and D can react to form A and B. This is distinct from a reversible process in thermodynamics.
Reversible Michaelis–Menten kinetics. Enzymes are proteins that act as biological catalysts by accelerating chemical reactions. Enzymes act on small molecules called substrates, which an enzyme converts into products. Almost all metabolic processes in the cell need enzyme catalysis in order to occur at rates fast enough to sustain life.
Protein phosphorylation is a reversible post-translational modification of proteins. In eukaryotes, protein phosphorylation functions in cell signaling, gene expression, and differentiation. It is also involved in DNA replication during the cell cycle, and the mechanisms that cope with stress-induced replication blocks.
In a reversible reaction, chemical equilibrium is reached when the rates of the forward and reverse reactions are equal (the principle of dynamic equilibrium) and the concentrations of the reactants and products no longer change. This is demonstrated by, for example, the Haber–Bosch process for combining nitrogen and hydrogen to produce ammonia.
The reversible phosphorylation-dephosphorylation reaction occurs in every physiological process, making proper function of protein phosphatases necessary for organism viability. Because protein dephosphorylation is a key process involved in cell signalling , [ 1 ] protein phosphatases are implicated in conditions such as cardiac disease ...
Dynamic equilibrium. In chemistry, a dynamic equilibrium exists once a reversible reaction occurs. Substances transition between the reactants and products at equal rates, meaning there is no net change. Reactants and products are formed at such a rate that the concentration of neither changes. It is a particular example of a system in a steady ...
The Gibbs free energy is one of the most important thermodynamic functions for the characterization of a system. It is a factor in determining outcomes such as the voltage of an electrochemical cell, and the equilibrium constant for a reversible reaction.
Biological thermodynamics (Thermodynamics of biological systems) is a science that explains the nature and general laws of thermodynamic processes occurring in living organisms as nonequilibrium thermodynamic systems that convert the energy of the Sun and food into other types of energy. The nonequilibrium thermodynamic state of living ...