enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Generalizations of Fibonacci numbers - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of...

    The n-Fibonacci constant is the ratio toward which adjacent -Fibonacci numbers tend; it is also called the n th metallic mean, and it is the only positive root of =. For example, the case of n = 1 {\displaystyle n=1} is 1 + 5 2 {\displaystyle {\frac {1+{\sqrt {5}}}{2}}} , or the golden ratio , and the case of n = 2 {\displaystyle n=2} is 1 + 2 ...

  3. Fibonacci heap - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_heap

    A Fibonacci heap is a collection of trees satisfying the minimum-heap property, that is, the key of a child is always greater than or equal to the key of the parent. This implies that the minimum key is always at the root of one of the trees. Compared with binomial heaps, the structure of a Fibonacci heap is more flexible.

  4. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    Fibonacci sequence. In mathematics, the Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones. Numbers that are part of the Fibonacci sequence are known as Fibonacci numbers, commonly denoted Fn . Many writers begin the sequence with 0 and 1, although some authors start it from 1 and 1 [1][2] and some (as ...

  5. Fibonacci polynomials - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_polynomials

    Fibonacci polynomials. In mathematics, the Fibonacci polynomials are a polynomial sequence which can be considered as a generalization of the Fibonacci numbers. The polynomials generated in a similar way from the Lucas numbers are called Lucas polynomials.

  6. Fibonacci coding - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_coding

    In mathematics and computing, Fibonacci coding is a universal code [citation needed] which encodes positive integers into binary code words. It is one example of representations of integers based on Fibonacci numbers. Each code word ends with "11" and contains no other instances of "11" before the end. The Fibonacci code is closely related to ...

  7. Pisano period - Wikipedia

    en.wikipedia.org/wiki/Pisano_period

    The Pisano period, denoted π (n), is the length of the period of this sequence. For example, the sequence of Fibonacci numbers modulo 3 begins: This sequence has period 8, so π (3) = 8. For n = 3, this is a visualization of the Pisano period in the two-dimensional state space of the recurrence relation.

  8. Prefix sum - Wikipedia

    en.wikipedia.org/wiki/Prefix_sum

    Prefix sums are trivial to compute in sequential models of computation, by using the formula y i = y i − 1 + x i to compute each output value in sequence order. However, despite their ease of computation, prefix sums are a useful primitive in certain algorithms such as counting sort, [1] [2] and they form the basis of the scan higher-order function in functional programming languages.

  9. Lazy evaluation - Wikipedia

    en.wikipedia.org/wiki/Lazy_evaluation

    The actual values are only computed when needed. For example, one could create a function that creates an infinite list (often called a stream) of Fibonacci numbers. The calculation of the n-th Fibonacci number would be merely the extraction of that element from the infinite list, forcing the evaluation of only the first n members of the list.