enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    The solution set for the equations x − y = −1 and 3x + y = 9 is the single point (2, 3). A solution of a linear system is an assignment of values to the variables ,, …, such that each of the equations is satisfied.

  3. Equation solving - Wikipedia

    en.wikipedia.org/wiki/Equation_solving

    Two other solutions are x = 3, y = 6, z = 1, and x = 8, y = 9, z = 2. There is a unique plane in three-dimensional space which passes through the three points with these coordinates , and this plane is the set of all points whose coordinates are solutions of the equation.

  4. Relaxation (iterative method) - Wikipedia

    en.wikipedia.org/wiki/Relaxation_(iterative_method)

    [2] [3] They are also used for the solution of linear equations for linear least-squares problems [4] and also for systems of linear inequalities, such as those arising in linear programming. [5] [6] [7] They have also been developed for solving nonlinear systems of equations. [1] Relaxation methods are important especially in the solution of ...

  5. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    For example, implicit linear multistep methods include Adams-Moulton methods, and backward differentiation methods (BDF), whereas implicit Runge–Kutta methods [6] include diagonally implicit Runge–Kutta (DIRK), [7] [8] singly diagonally implicit Runge–Kutta (SDIRK), [9] and Gauss–Radau [10] (based on Gaussian quadrature [11]) numerical ...

  6. Iterative method - Wikipedia

    en.wikipedia.org/wiki/Iterative_method

    If an equation can be put into the form f(x) = x, and a solution x is an attractive fixed point of the function f, then one may begin with a point x 1 in the basin of attraction of x, and let x n+1 = f(x n) for n ≥ 1, and the sequence {x n} n ≥ 1 will converge to the solution x.

  7. Linear algebra - Wikipedia

    en.wikipedia.org/wiki/Linear_algebra

    Cramer's rule is a closed-form expression, in terms of determinants, of the solution of a system of n linear equations in n unknowns. Cramer's rule is useful for reasoning about the solution, but, except for n = 2 or 3, it is rarely used for computing a solution, since Gaussian elimination is a faster algorithm.

  8. Cramer's rule - Wikipedia

    en.wikipedia.org/wiki/Cramer's_rule

    In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the ...

  9. Gauss–Seidel method - Wikipedia

    en.wikipedia.org/wiki/Gauss–Seidel_method

    In numerical linear algebra, the Gauss–Seidel method, also known as the Liebmann method or the method of successive displacement, is an iterative method used to solve a system of linear equations. It is named after the German mathematicians Carl Friedrich Gauss and Philipp Ludwig von Seidel .