enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Power series - Wikipedia

    en.wikipedia.org/wiki/Power_series

    Power series. In mathematics, a power series (in one variable) is an infinite series of the form where an represents the coefficient of the n th term and c is a constant called the center of the series. Power series are useful in mathematical analysis, where they arise as Taylor series of infinitely differentiable functions.

  3. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    Exponential functions with bases 2 and 1/2. The exponential function is a mathematical function denoted by () = ⁡ or (where the argument x is written as an exponent).Unless otherwise specified, the term generally refers to the positive-valued function of a real variable, although it can be extended to the complex numbers or generalized to other mathematical objects like matrices or Lie algebras.

  4. Characterizations of the exponential function - Wikipedia

    en.wikipedia.org/wiki/Characterizations_of_the...

    The exponential function is the unique function f with the multiplicative property for all and . The condition can be replaced with together with any of the following regularity conditions: f is Lebesgue-measurable (Hewitt and Stromberg, 1965, exercise 18.46). f is continuous at any one point (Rudin, 1976, chapter 8, exercise 6).

  5. Radius of convergence - Wikipedia

    en.wikipedia.org/wiki/Radius_of_convergence

    Two cases arise: The first case is theoretical: when you know all the coefficients then you take certain limits and find the precise radius of convergence.; The second case is practical: when you construct a power series solution of a difficult problem you typically will only know a finite number of terms in a power series, anywhere from a couple of terms to a hundred terms.

  6. Formal power series - Wikipedia

    en.wikipedia.org/wiki/Formal_power_series

    A formal power series can be loosely thought of as an object that is like a polynomial, but with infinitely many terms.Alternatively, for those familiar with power series (or Taylor series), one may think of a formal power series as a power series in which we ignore questions of convergence by not assuming that the variable X denotes any numerical value (not even an unknown value).

  7. Bell series - Wikipedia

    en.wikipedia.org/wiki/Bell_series

    Bell series. In mathematics, the Bell series is a formal power series used to study properties of arithmetical functions. Bell series were introduced and developed by Eric Temple Bell. Given an arithmetic function and a prime , define the formal power series , called the Bell series of modulo as: ∑ 0 ∞ {\displaystyle f_ {p} (x)=\sum _ {n=0 ...

  8. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    The function e (−1/x 2) is not analytic at x = 0: the Taylor series is identically 0, although the function is not. If f (x) is given by a convergent power series in an open disk centred at b in the complex plane (or an interval in the real line), it is said to be analytic in this region. Thus for x in this region, f is given by a convergent ...

  9. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    Each curve passes through the point (0, 1) because any nonzero number raised to the power of 0 is 1. At x = 1, the value of y equals the base because any number raised to the power of 1 is the number itself. In mathematics, exponentiation is an operation involving two numbers: the base and the exponent or power.