Search results
Results from the WOW.Com Content Network
Simple harmonic motion can be considered the one-dimensional projection of uniform circular motion. If an object moves with angular speed ω around a circle of radius r centered at the origin of the xy-plane, then its motion along each coordinate is simple harmonic motion with amplitude r and angular frequency ω.
The motion is periodic, repeating itself in a sinusoidal fashion with constant amplitude A. In addition to its amplitude, the motion of a simple harmonic oscillator is characterized by its period = /, the time for a single oscillation or its frequency = /, the number of cycles per unit time.
The Hooke's atom is a simple model of the helium atom using the quantum harmonic oscillator. Modelling phonons, as discussed above. A charge q {\displaystyle q} with mass m {\displaystyle m} in a uniform magnetic field B {\displaystyle \mathbf {B} } is an example of a one-dimensional quantum harmonic oscillator: Landau quantization .
Harmonic motion can mean: the displacement of the particle executing oscillatory motion that can be expressed in terms of sine or cosine functions known as harmonic motion . The motion of a Harmonic oscillator (in physics), which can be: Simple harmonic motion; Complex harmonic motion; Keplers laws of planetary motion (in physics, known as the ...
The restoring force is often referred to in simple harmonic motion. The force responsible for restoring original size and shape is called the restoring force. [1] [2] An example is the action of a spring. An idealized spring exerts a force proportional to the amount of deformation of the spring from its equilibrium length, exerted in a ...
A molecular vibration is a periodic motion of the atoms of a molecule relative to each other, such that the center of mass of the molecule remains unchanged. The typical vibrational frequencies range from less than 10 13 Hz to approximately 10 14 Hz, corresponding to wavenumbers of approximately 300 to 3000 cm −1 and wavelengths of approximately 30 to 3 μm.
Natural frequency, measured in terms of eigenfrequency, is the rate at which an oscillatory system tends to oscillate in the absence of disturbance. A foundational example pertains to simple harmonic oscillators, such as an idealized spring with no energy loss wherein the system exhibits constant-amplitude oscillations with a constant frequency.
To see an example where Liouville's theorem does not apply, we can modify the equations of motion for the simple harmonic oscillator to account for the effects of friction or damping. Consider again the system of N {\displaystyle N} particles each in a 3 {\displaystyle 3} -dimensional isotropic harmonic potential, the Hamiltonian for which is ...