Search results
Results from the WOW.Com Content Network
Deque is sometimes written dequeue, but this use is generally deprecated in technical literature or technical writing because dequeue is also a verb meaning "to remove from a queue". Nevertheless, several libraries and some writers, such as Aho, Hopcroft, and Ullman in their textbook Data Structures and Algorithms, spell it dequeue.
The operation of adding an element to the rear of the queue is known as enqueue, and the operation of removing an element from the front is known as dequeue. Other operations may also be allowed, often including a peek or front operation that returns the value of the next element to be dequeued without dequeuing it.
In computer science, peek is an operation on certain abstract data types, specifically sequential collections such as stacks and queues, which returns the value of the top ("front") of the collection without removing the element from the collection. It thus returns the same value as operations such as "pop" or "dequeue", but does not modify the ...
is_empty: check whether the queue has no elements. insert_with_priority: add an element to the queue with an associated priority. pull_highest_priority_element: remove the element from the queue that has the highest priority, and return it. This is also known as "pop_element(Off)", "get_maximum_element" or "get_front(most)_element".
But {{{1|}}} will evaluate to the empty string (a false value) because the vertical bar or pipe character, "|", immediately following the parameter name specifies a default value (here an empty string because there is nothing between the pipe and the first closing curly brace) as a "fallback" value to be used if the parameter is undefined.
In computer science, the word dequeue can be used as: A verb meaning "to remove from a queue" An abbreviation for double-ended queue (more commonly, deque
The prime implicant chart can be represented by a dictionary where each key is a prime implicant and the corrresponding value is an empty string that will store a binary string once this step is complete. Each bit in the binary string is used to represent the ticks within the prime implicant chart.
Input: A graph G and a starting vertex root of G. Output: Goal state.The parent links trace the shortest path back to root [9]. 1 procedure BFS(G, root) is 2 let Q be a queue 3 label root as explored 4 Q.enqueue(root) 5 while Q is not empty do 6 v := Q.dequeue() 7 if v is the goal then 8 return v 9 for all edges from v to w in G.adjacentEdges(v) do 10 if w is not labeled as explored then 11 ...