enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quasicrystal - Wikipedia

    en.wikipedia.org/wiki/Quasicrystal

    The concept of an almost periodic function (also called a quasiperiodic function) was studied by Bohr, including work of Bohl and Escanglon. [47] He introduced the notion of a superspace. Bohr showed that quasiperiodic functions arise as restrictions of high-dimensional periodic functions to an irrational slice (an intersection with one or more ...

  3. Trigonometry - Wikipedia

    en.wikipedia.org/wiki/Trigonometry

    Fourier discovered that every continuous, periodic function could be described as an infinite sum of trigonometric functions. Even non-periodic functions can be represented as an integral of sines and cosines through the Fourier transform. This has applications to quantum mechanics [64] and communications, [65] among other fields.

  4. Quasiperiodicity - Wikipedia

    en.wikipedia.org/wiki/Quasiperiodicity

    Quasiperiodic behavior is almost but not quite periodic. [2] The term used to denote oscillations that appear to follow a regular pattern but which do not have a fixed period. The term thus used does not have a precise definition and should not be confused with more strictly defined mathematical concepts such as an almost periodic function or a ...

  5. Periodic function - Wikipedia

    en.wikipedia.org/wiki/Periodic_function

    A periodic function, also called a periodic waveform (or simply periodic wave), is a function that repeats its values at regular intervals or periods. The repeatable part of the function or waveform is called a cycle . [ 1 ]

  6. Fourier series - Wikipedia

    en.wikipedia.org/wiki/Fourier_series

    Fig 1. The top graph shows a non-periodic function () in blue defined only over the red interval from 0 to P. The function can be analyzed over this interval to produce the Fourier series in the bottom graph. The Fourier series is always a periodic function, even if original function () is not.

  7. List of aperiodic sets of tiles - Wikipedia

    en.wikipedia.org/wiki/List_of_aperiodic_sets_of...

    An example of such a tiling is shown in the adjacent diagram (see the image description for more information). A tiling that cannot be constructed from a single primitive cell is called nonperiodic. If a given set of tiles allows only nonperiodic tilings, then this set of tiles is called aperiodic . [ 3 ]

  8. Quasiperiodic function - Wikipedia

    en.wikipedia.org/wiki/Quasiperiodic_function

    Bloch's theorem says that the eigenfunctions of a periodic Schrödinger equation (or other periodic linear equations) can be found in quasiperiodic form, and a related form of quasi-periodic solution for periodic linear differential equations is expressed by Floquet theory. Functions with an additive functional equation

  9. Einstein problem - Wikipedia

    en.wikipedia.org/wiki/Einstein_problem

    The presence of the screw symmetry resulted in a reevaluation of the requirements for non-periodicity. [4] Chaim Goodman-Strauss suggested that a tiling be considered strongly aperiodic if it admits no infinite cyclic group of Euclidean motions as symmetries, and that only tile sets which enforce strong aperiodicity be called strongly aperiodic ...