enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    In statistics, the 68–95–99.7 rule, also known as the empirical rule, and sometimes abbreviated 3sr, is a shorthand used to remember the percentage of values that lie within an interval estimate in a normal distribution: approximately 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations of the mean, respectively.

  3. Chebyshev's inequality - Wikipedia

    en.wikipedia.org/wiki/Chebyshev's_inequality

    The rule is often called Chebyshev's theorem, about the range of standard deviations around the mean, in statistics. The inequality has great utility because it can be applied to any probability distribution in which the mean and variance are defined. For example, it can be used to prove the weak law of large numbers.

  4. Empirical statistical laws - Wikipedia

    en.wikipedia.org/wiki/Empirical_statistical_laws

    There are several such popular "laws of statistics". The Pareto principle is a popular example of such a "law". It states that roughly 80% of the effects come from 20% of the causes, and is thus also known as the 80/20 rule. [2] In business, the 80/20 rule says that 80% of your business comes from just 20% of your customers. [3]

  5. Chebyshev's sum inequality - Wikipedia

    en.wikipedia.org/wiki/Chebyshev's_sum_inequality

    Consider the sum = = = (). The two sequences are non-increasing, therefore a j − a k and b j − b k have the same sign for any j, k.Hence S ≥ 0.. Opening the brackets, we deduce:

  6. Chebyshev's theorem - Wikipedia

    en.wikipedia.org/wiki/Chebyshev's_theorem

    Chebyshev's theorem is any of several theorems proven by Russian mathematician Pafnuty Chebyshev. Bertrand's postulate, that for every n there is a prime between n and 2n. Chebyshev's inequality, on the range of standard deviations around the mean, in statistics; Chebyshev's sum inequality, about sums and products of decreasing sequences

  7. Multidimensional Chebyshev's inequality - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_Chebyshev...

    In probability theory, the multidimensional Chebyshev's inequality [1] is a generalization of Chebyshev's inequality, which puts a bound on the probability of the event that a random variable differs from its expected value by more than a specified amount.

  8. Cantelli's inequality - Wikipedia

    en.wikipedia.org/wiki/Cantelli's_inequality

    While the inequality is often attributed to Francesco Paolo Cantelli who published it in 1928, [4] it originates in Chebyshev's work of 1874. [5] When bounding the event random variable deviates from its mean in only one direction (positive or negative), Cantelli's inequality gives an improvement over Chebyshev's inequality.

  9. Chebyshev–Markov–Stieltjes inequalities - Wikipedia

    en.wikipedia.org/wiki/Chebyshev–Markov...

    In mathematical analysis, the Chebyshev–Markov–Stieltjes inequalities are inequalities related to the problem of moments that were formulated in the 1880s by Pafnuty Chebyshev and proved independently by Andrey Markov and (somewhat later) by Thomas Jan Stieltjes. [1]