enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Genetic algorithm - Wikipedia

    en.wikipedia.org/wiki/Genetic_algorithm

    Examples of problems solved by genetic algorithms include: mirrors designed to funnel sunlight to a solar collector, [35] antennae designed to pick up radio signals in space, [36] walking methods for computer figures, [37] optimal design of aerodynamic bodies in complex flowfields [38]

  3. Crossover (evolutionary algorithm) - Wikipedia

    en.wikipedia.org/wiki/Crossover_(evolutionary...

    Crossover in evolutionary algorithms and evolutionary computation, also called recombination, is a genetic operator used to combine the genetic information of two parents to generate new offspring. It is one way to stochastically generate new solutions from an existing population, and is analogous to the crossover that happens during sexual ...

  4. List of genetic algorithm applications - Wikipedia

    en.wikipedia.org/wiki/List_of_genetic_algorithm...

    Genetic Algorithm for Rule Set Production Scheduling applications , including job-shop scheduling and scheduling in printed circuit board assembly. [ 14 ] The objective being to schedule jobs in a sequence-dependent or non-sequence-dependent setup environment in order to maximize the volume of production while minimizing penalties such as ...

  5. Mutation (evolutionary algorithm) - Wikipedia

    en.wikipedia.org/wiki/Mutation_(evolutionary...

    The classic example of a mutation operator of a binary coded genetic algorithm (GA) involves a probability that an arbitrary bit in a genetic sequence will be flipped from its original state. A common method of implementing the mutation operator involves generating a random variable for each bit in a sequence. This random variable tells whether ...

  6. Neuroevolution of augmenting topologies - Wikipedia

    en.wikipedia.org/wiki/Neuroevolution_of...

    The competing conventions problem arises when there is more than one way of representing information in a phenotype. For example, if a genome contains neurons A, B and C and is represented by [A B C], if this genome is crossed with an identical genome (in terms of functionality) but ordered [C B A] crossover will yield children that are missing information ([A B A] or [C B C]), in fact 1/3 of ...

  7. Genetic programming - Wikipedia

    en.wikipedia.org/wiki/Genetic_programming

    Genetic programming (GP) is an evolutionary algorithm, an artificial intelligence technique mimicking natural evolution, which operates on a population of programs. It applies the genetic operators selection according to a predefined fitness measure , mutation and crossover .

  8. Selection (evolutionary algorithm) - Wikipedia

    en.wikipedia.org/wiki/Selection_(evolutionary...

    Selection is a genetic operator in an evolutionary algorithm (EA). An EA is a metaheuristic inspired by biological evolution and aims to solve challenging problems at least approximately. Selection has a dual purpose: on the one hand, it can choose individual genomes from a population for subsequent breeding (e.g., using the crossover operator ...

  9. Chromosome (evolutionary algorithm) - Wikipedia

    en.wikipedia.org/wiki/Chromosome_(evolutionary...

    They determine one or more phenotypic characteristics of the individual or at least have an influence on them. [2] In the basic form of genetic algorithms, the chromosome is represented as a binary string, [5] while in later variants [6] [7] and in EAs in general, a wide variety of other data structures are used. [8] [9] [10]