Search results
Results from the WOW.Com Content Network
De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.
The term "Boolean algebra" honors George Boole (1815–1864), a self-educated English mathematician. He introduced the algebraic system initially in a small pamphlet, The Mathematical Analysis of Logic, published in 1847 in response to an ongoing public controversy between Augustus De Morgan and William Hamilton, and later as a more substantial book, The Laws of Thought, published in 1854.
Pythagorean theorem: It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides. The theorem can be written as an equation relating the lengths of the sides a, b and the hypotenuse c, sometimes called the Pythagorean equation: [6]
Augustus De Morgan (27 June 1806 – 18 March 1871) was a British mathematician and logician.He is best known for De Morgan's laws, relating logical conjunction, disjunction, and negation, and for coining the term "mathematical induction", the underlying principles of which he formalized. [1]
Artin reciprocity law is a general theorem in number theory that forms a central part of global class field theory. Named after Emil Artin . Ashby's law of requisite variety, that the number of states in a control mechanism must be greater than or equal to the number of states in the system it controls.
De Morgan or de Morgan is a surname, and may refer to: Augustus De Morgan (1806–1871), British mathematician and logician. De Morgan's laws (or De Morgan's theorem), a set of rules from propositional logic. The De Morgan Medal, a triennial mathematics prize awarded by the London Mathematical Society.
In proof theory and mathematical logic, sequent calculus is a family of formal systems sharing a certain style of inference and certain formal properties. The first sequent calculi systems, LK and LJ, were introduced in 1934/1935 by Gerhard Gentzen [1] as a tool for studying natural deduction in first-order logic (in classical and intuitionistic versions, respectively).
The most serious disadvantage is the limited types of knowledge that can be assessed by multiple choice tests. Multiple choice tests are best adapted for testing well-defined or lower-order skills. Problem-solving and higher-order reasoning skills are better assessed through short-answer and essay tests.