Search results
Results from the WOW.Com Content Network
In linear algebra, the outer product of two coordinate vectors is the matrix whose entries are all products of an element in the first vector with an element in the second vector. If the two coordinate vectors have dimensions n and m , then their outer product is an n × m matrix.
There are two lists of mathematical identities related to vectors: Vector algebra relations — regarding operations on individual vectors such as dot product, cross product, etc. Vector calculus identities — regarding operations on vector fields such as divergence, gradient, curl, etc.
The matrix product of a column and a row vector gives the outer product of two vectors a, b, an example of the more general tensor product. The matrix product of the column vector representation of a and the row vector representation of b gives the components of their dyadic product,
The cross product (also called the vector product or outer product) is only meaningful in three or seven dimensions. The cross product differs from the dot product primarily in that the result of the cross product of two vectors is a vector. The cross product, denoted a × b, is a vector perpendicular to both a and b and is defined as
The two polar coordinates of a point in a plane may be considered as a two dimensional vector. Such a vector consists of a magnitude (or length) and a direction (or angle). The magnitude, typically represented as r , is the distance from a starting point, the origin , to the point which is represented.
The members of the algebra may be decomposed by grade (as in the formalism of differential forms) and the (geometric) product of a vector with a k-vector decomposes into a (k − 1)-vector and a (k + 1)-vector. The (k − 1)-vector component can be identified with the inner product and the (k + 1)-vector component with the outer product. It is ...
The dot product takes in two vectors and returns a scalar, while the cross product [a] returns a pseudovector. Both of these have various significant geometric interpretations and are widely used in mathematics, physics, and engineering. The dyadic product takes in two vectors and returns a second order tensor called a dyadic in this context. A ...
Such an element is a k-blade when it can be expressed as the exterior product of k vectors. A geometric algebra generated by a four-dimensional vector space illustrates the point with an example: The sum of any two blades with one taken from the XY-plane and the other taken from the ZW-plane will form a 2-vector that is not a 2-blade.