Search results
Results from the WOW.Com Content Network
HAVAL is a cryptographic hash function. Unlike MD5, but like most modern cryptographic hash functions, HAVAL can produce hashes of different lengths – 128 bits, 160 bits, 192 bits, 224 bits, and 256 bits. HAVAL also allows users to specify the number of rounds (3, 4, or 5) to be used to generate the hash. HAVAL was broken in 2004. [1]
The following tables compare general and technical information for a number of cryptographic hash functions. See the individual functions' articles for further information. This article is not all-inclusive or necessarily up-to-date. An overview of hash function security/cryptanalysis can be found at hash function security summary.
Most cryptographic hash functions are designed to take a string of any length as input and produce a fixed-length hash value. A cryptographic hash function must be able to withstand all known types of cryptanalytic attack. In theoretical cryptography, the security level of a cryptographic hash function has been defined using the following ...
Hash function Security claim Best attack Publish date Comment GOST: 2 128: 2 105: 2008-08-18 Paper. [12]HAVAL-128 : 2 64: 2 7: 2004-08-17 Collisions originally reported in 2004, [13] followed up by cryptanalysis paper in 2005.
hash GOST: 256 bits hash Grøstl: up to 512 bits hash HAS-160: 160 bits hash HAVAL: 128 to 256 bits hash JH: 224 to 512 bits hash LSH [19] 256 to 512 bits wide-pipe Merkle–Damgård construction: MD2: 128 bits hash MD4: 128 bits hash MD5: 128 bits Merkle–Damgård construction: MD6: up to 512 bits Merkle tree NLFSR (it is also a keyed hash ...
SHA-3 (Secure Hash Algorithm 3) is the latest [4] member of the Secure Hash Algorithm family of standards, released by NIST on August 5, 2015. [ 5 ] [ 6 ] [ 7 ] Although part of the same series of standards, SHA-3 is internally different from the MD5 -like structure of SHA-1 and SHA-2 .
In cryptography, the avalanche effect is the desirable property of cryptographic algorithms, typically block ciphers [1] and cryptographic hash functions, wherein if an input is changed slightly (for example, flipping a single bit), the output changes significantly (e.g., half the output bits flip).
A common use of one-way compression functions is in the Merkle–Damgård construction inside cryptographic hash functions. Most widely used hash functions, including MD5, SHA-1 (which is deprecated [2]) and SHA-2 use this construction. A hash function must be able to process an arbitrary-length message into a fixed-length output.