Search results
Results from the WOW.Com Content Network
A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.
Numeric literals in Python are of the normal sort, e.g. 0, -1, 3.4, 3.5e-8. Python has arbitrary-length integers and automatically increases their storage size as necessary. Prior to Python 3, there were two kinds of integral numbers: traditional fixed size integers and "long" integers of arbitrary size.
Symbol-specific names are also used; decimal point and decimal comma refer to a dot (either baseline or middle) and comma respectively, when it is used as a decimal separator; these are the usual terms used in English, [1] [2] [3] with the aforementioned generic terms reserved for abstract usage.
Like raw strings, there can be any number of equals signs between the square brackets, provided both the opening and closing tags have a matching number of equals signs; this allows nesting as long as nested block comments/raw strings use a different number of equals signs than their enclosing comment: --[[comment --[=[ nested comment ...
Negative numbers: Real numbers that are less than zero. Because zero itself has no sign, neither the positive numbers nor the negative numbers include zero. When zero is a possibility, the following terms are often used: Non-negative numbers: Real numbers that are greater than or equal to zero. Thus a non-negative number is either zero or positive.
Integer overflow can be demonstrated through an odometer overflowing, a mechanical version of the phenomenon. All digits are set to the maximum 9 and the next increment of the white digit causes a cascade of carry-over additions setting all digits to 0, but there is no higher digit (1,000,000s digit) to change to a 1, so the counter resets to zero.
In such a context, "simplifying" a number by removing trailing zeros would be incorrect. The number of trailing zeros in a non-zero base-b integer n equals the exponent of the highest power of b that divides n. For example, 14000 has three trailing zeros and is therefore divisible by 1000 = 10 3, but not by 10 4.
The most common superscript digits (1, 2, and 3) were included in ISO-8859-1 and were therefore carried over into those code points in the Latin-1 range of Unicode. The remainder were placed along with basic arithmetical symbols, and later some Latin subscripts, in a dedicated block at U+2070 to U+209F.