Search results
Results from the WOW.Com Content Network
In geometry, the 8-cubic honeycomb or octeractic honeycomb is the only regular space-filling tessellation (or honeycomb) in Euclidean 8-space. It is analogous to the square tiling of the plane and to the cubic honeycomb of 3-space, and the tesseractic honeycomb of 4-space. There are many different Wythoff constructions of this honeycomb.
In eight-dimensional Euclidean geometry, the cyclotruncated 8-simplex honeycomb is a space-filling tessellation (or honeycomb). The tessellation fills space by 8-simplex, truncated 8-simplex, bitruncated 8-simplex, tritruncated 8-simplex, and quadritruncated 8-simplex facets. These facet types occur in proportions of 2:2:2:2:1 respectively in ...
8 lattice is the union of three A 8 lattices, and also identical to the E8 lattice. [3] ∪ ∪ = . The A * 8 lattice (also called A 9 8) is the union of nine A 8 lattices, and has the vertex arrangement of the dual honeycomb to the omnitruncated 8-simplex honeycomb, and therefore the Voronoi cell of this lattice is an omnitruncated 8-simplex
In eight-dimensional Euclidean geometry, the omnitruncated 8-simplex honeycomb is a space-filling tessellation (or honeycomb). It is composed entirely of omnitruncated 8-simplex facets. The facets of all omnitruncated simplectic honeycombs are called permutahedra and can be positioned in n+1 space with integral coordinates, permutations of the ...
In geometry, a uniform honeycomb or uniform tessellation or infinite uniform polytope, is a vertex-transitive honeycomb made from uniform polytope facets. All of its vertices are identical and there is the same combination and arrangement of faces at each vertex. Its dimension can be clarified as n-honeycomb for an n-dimensional honeycomb.
The cubic honeycomb or cubic cellulation is the only proper regular space-filling tessellation (or honeycomb) in Euclidean 3-space made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex. Its vertex figure is a regular octahedron. It is a self-dual tessellation with Schläfli symbol {4,3,4}.
The alternated cubic honeycomb is one of 28 space-filling uniform tessellations in Euclidean 3-space, composed of alternating yellow tetrahedra and red octahedra.. In geometry, a convex uniform honeycomb is a uniform tessellation which fills three-dimensional Euclidean space with non-overlapping convex uniform polyhedral cells.
8 colors In geometry , a hypercubic honeycomb is a family of regular honeycombs ( tessellations ) in n - dimensional spaces with the Schläfli symbols {4,3...3,4} and containing the symmetry of Coxeter group R n (or B ~ n –1 ) for n ≥ 3 .