Search results
Results from the WOW.Com Content Network
In biochemistry, a zymogen (/ ˈ z aɪ m ə dʒ ən,-m oʊ-/ [1] [2]), also called a proenzyme (/ ˌ p r oʊ ˈ ɛ n z aɪ m / [3] [4]), is an inactive precursor of an enzyme.A zymogen requires a biochemical change (such as a hydrolysis reaction revealing the active site, or changing the configuration to reveal the active site) for it to become an active enzyme.
The metabolic pathway of glycolysis releases energy by converting glucose to pyruvate via a series of intermediate metabolites. Each chemical modification (red box) is performed by a different enzyme. Several enzymes can work together in a specific order, creating metabolic pathways.
The precursors of caspase, procaspase, may be activated by proteolysis through its association with a protein complex that forms apoptosome, or by granzyme B, or via the death receptor pathways. Autoproteolysis
In the field of drug discovery, retrometabolic drug design is a strategy for the design of safer drugs either using predictable metabolism to an inactive moiety or using targeted drug delivery approaches. The phrase retrometabolic drug design was coined by Nicholas Bodor. [1]
The prothrombinase complex catalyzes the conversion of prothrombin (factor II), an inactive zymogen, to thrombin (factor IIa), an active serine protease. The activation of thrombin is a critical reaction in the coagulation cascade , which functions to regulate hemostasis in the body.
A protein precursor, also called a pro-protein or pro-peptide, is an inactive protein (or peptide) that can be turned into an active form by post-translational modification, such as breaking off a piece of the molecule or adding on another molecule. The name of the precursor for a protein is often prefixed by pro-.
An anabolic pathway is a biosynthetic pathway, meaning that it combines smaller molecules to form larger and more complex ones. [ 10 ] : 570 An example is the reversed pathway of glycolysis, otherwise known as gluconeogenesis , which occurs in the liver and sometimes in the kidney to maintain proper glucose concentration in the blood and supply ...
In 13 C-fluxomics, metabolic precursors are enriched with 13 C before being introduced to the system. [11] Using an imaging technique such as mass spectrometry or nuclear magnetic resonance spectroscopy the level of incorporation of 13 C into metabolites can be measured and with stoichiometry the metabolic fluxes can be estimated. [11]