enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fixed effects model - Wikipedia

    en.wikipedia.org/wiki/Fixed_effects_model

    In statistics, a fixed effects model is a statistical model in which the model parameters are fixed or non-random quantities. This is in contrast to random effects models and mixed models in which all or some of the model parameters are random variables.

  3. Fixed-effect Poisson model - Wikipedia

    en.wikipedia.org/wiki/Fixed-effect_Poisson_model

    Linear panel data models use the linear additivity of the fixed effects to difference them out and circumvent the incidental parameter problem. Even though Poisson models are inherently nonlinear, the use of the linear index and the exponential link function lead to multiplicative separability, more specifically [2] E[y it ∨ x i1...

  4. Poisson regression - Wikipedia

    en.wikipedia.org/wiki/Poisson_regression

    In statistics, Poisson regression is a generalized linear model form of regression analysis used to model count data and contingency tables. [1] Poisson regression assumes the response variable Y has a Poisson distribution, and assumes the logarithm of its expected value can be modeled by a linear combination of unknown parameters.

  5. Parallel curve - Wikipedia

    en.wikipedia.org/wiki/Parallel_curve

    In this case, one gets a parallel curve on the opposite side of the curve (see diagram on the parallel curves of a circle). One can easily check that a parallel curve of a line is a parallel line in the common sense, and the parallel curve of a circle is a concentric circle.

  6. Ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Ordinary_least_squares

    In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...

  7. Generalized estimating equation - Wikipedia

    en.wikipedia.org/.../Generalized_estimating_equation

    In statistics, a generalized estimating equation (GEE) is used to estimate the parameters of a generalized linear model with a possible unmeasured correlation between observations from different timepoints.

  8. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    In Dempster–Shafer theory, or a linear belief function in particular, a linear regression model may be represented as a partially swept matrix, which can be combined with similar matrices representing observations and other assumed normal distributions and state equations. The combination of swept or unswept matrices provides an alternative ...

  9. Simple linear regression - Wikipedia

    en.wikipedia.org/wiki/Simple_linear_regression

    The formulas given in the previous section allow one to calculate the point estimates of α and β — that is, the coefficients of the regression line for the given set of data. However, those formulas do not tell us how precise the estimates are, i.e., how much the estimators α ^ {\displaystyle {\widehat {\alpha }}} and β ^ {\displaystyle ...