Search results
Results from the WOW.Com Content Network
In a vector space, the additive inverse −v (often called the opposite vector of v) has the same magnitude as v and but the opposite direction. [11] In modular arithmetic, the modular additive inverse of x is the number a such that a + x ≡ 0 (mod n) and always exists. For example, the inverse of 3 modulo 11 is 8, as 3 + 8 ≡ 0 (mod 11). [12]
However, the sine is one-to-one on the interval [− π / 2 , π / 2 ], and the corresponding partial inverse is called the arcsine. This is considered the principal branch of the inverse sine, so the principal value of the inverse sine is always between − π / 2 and π / 2 .
1. Denotes subtraction and is read as minus; for example, 3 – 2. 2. Denotes the additive inverse and is read as minus, the negative of, or the opposite of; for example, –2. 3. Also used in place of \ for denoting the set-theoretic complement; see \ in § Set theory. × (multiplication sign) 1.
The reciprocal function: y = 1/x.For every x except 0, y represents its multiplicative inverse. The graph forms a rectangular hyperbola.. In mathematics, a multiplicative inverse or reciprocal for a number x, denoted by 1/x or x −1, is a number which when multiplied by x yields the multiplicative identity, 1.
For functions of more than one variable, the theorem states that if is a continuously differentiable function from an open subset of into , and the derivative ′ is invertible at a point a (that is, the determinant of the Jacobian matrix of f at a is non-zero), then there exist neighborhoods of in and of = such that () and : is bijective. [1]
This is only useful if the integral exists. In particular we need ′ to be non-zero across the range of integration. It follows that a function that has a continuous derivative has an inverse in a neighbourhood of every point where the derivative is non-zero. This need not be true if the derivative is not continuous.
In mathematics, −1 (negative one or minus one) is the additive inverse of 1, that is, the number that when added to 1 gives the additive identity element, 0. It is the negative integer greater than negative two (−2) and less than 0 .
If all elements are regular, then the semigroup (or monoid) is called regular, and every element has at least one inverse. If every element has exactly one inverse as defined in this section, then the semigroup is called an inverse semigroup. Finally, an inverse semigroup with only one idempotent is a group. An inverse semigroup may have an ...