Search results
Results from the WOW.Com Content Network
If x=a is a vertical asymptote of f(x), then x=a+h is a vertical asymptote of f(x-h) If y=c is a horizontal asymptote of f(x), then y=c+k is a horizontal asymptote of f(x)+k; If a known function has an asymptote, then the scaling of the function also have an asymptote. If y=ax+b is an asymptote of f(x), then y=cax+cb is an asymptote of cf(x)
The horizontal coordinate system is a celestial coordinate system that uses the observer's local horizon as the fundamental plane to define two angles of a spherical coordinate system: altitude and azimuth. Therefore, the horizontal coordinate system is sometimes called the az/el system, [1] the alt/az system, or the alt-azimuth system, among
In mathematical analysis, asymptotic analysis, also known as asymptotics, is a method of describing limiting behavior.. As an illustration, suppose that we are interested in the properties of a function f (n) as n becomes very large.
The vertical–horizontal illusion. The vertical–horizontal illusion is the tendency for observers to overestimate the length of a vertical line relative to a horizontal line of the same length. [1] This involves a bisecting component that causes the bisecting line to appear longer than the line that is bisected.
Vertical tangent on the function ƒ(x) at x = c. In mathematics, particularly calculus, a vertical tangent is a tangent line that is vertical. Because a vertical line has infinite slope, a function whose graph has a vertical tangent is not differentiable at the point of tangency.
A sequence of distributions corresponds to a sequence of random variables Z i for i = 1, 2, ..., I . In the simplest case, an asymptotic distribution exists if the probability distribution of Z i converges to a probability distribution (the asymptotic distribution) as i increases: see convergence in distribution.
The word "hyperbola" derives from the Greek ὑπερβολή, meaning "over-thrown" or "excessive", from which the English term hyperbole also derives. Hyperbolae were discovered by Menaechmus in his investigations of the problem of doubling the cube, but were then called sections of obtuse cones. [2]
The animation has it following the section. The orange square at the top is "the square on the distance from the point to the diameter; i.e., a square of the ordinate. In Apollonius, the orientation is horizontal rather than the vertical shown here. Here it is the square of the abscissa.