enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dirichlet function - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_function

    In fact, 1 ⁄ 2 is such an ε. Because the irrational numbers are dense in the reals, no matter what δ we choose we can always find an irrational z within δ of y, and f(z) = 0 is at least 1 ⁄ 2 away from 1. If y is irrational, then f(y) = 0.

  3. Irrationality measure - Wikipedia

    en.wikipedia.org/wiki/Irrationality_measure

    Rational numbers have irrationality exponent 1, while (as a consequence of Dirichlet's approximation theorem) every irrational number has irrationality exponent at least 2. On the other hand, an application of Borel-Cantelli lemma shows that almost all numbers, including all algebraic irrational numbers , have an irrationality exponent exactly ...

  4. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    In fact, all square roots of natural numbers, other than of perfect squares, are irrational. [2] Like all real numbers, irrational numbers can be expressed in positional notation, notably as a decimal number. In the case of irrational numbers, the decimal expansion does not terminate, nor end with a repeating sequence.

  5. Dirichlet's approximation theorem - Wikipedia

    en.wikipedia.org/wiki/Dirichlet's_approximation...

    This shows that any irrational number has irrationality measure at least 2. The Thue–Siegel–Roth theorem says that, for algebraic irrational numbers, the exponent of 2 in the corollary to Dirichlet’s approximation theorem is the best we can do: such numbers cannot be approximated by any exponent greater than 2.

  6. Farey sequence - Wikipedia

    en.wikipedia.org/wiki/Farey_sequence

    Farey sequences are very useful to find rational approximations of irrational numbers. [15] For example, the construction by Eliahou [16] of a lower bound on the length of non-trivial cycles in the 3x+1 process uses Farey sequences to calculate a continued fraction expansion of the number log 2 (3).

  7. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...

  8. Category:Irrational numbers - Wikipedia

    en.wikipedia.org/wiki/Category:Irrational_numbers

    In mathematics, an irrational number is any real number that is not a rational number, i.e., one that cannot be written as a fraction a / b with a and b integers and b not zero. This is also known as being incommensurable, or without common measure. The irrational numbers are precisely those numbers whose expansion in any given base (decimal ...

  9. Hermite's problem - Wikipedia

    en.wikipedia.org/wiki/Hermite's_problem

    Rational numbers are algebraic numbers that satisfy a polynomial of degree 1, while quadratic irrationals are algebraic numbers that satisfy a polynomial of degree 2. For both these sets of numbers we have a way to construct a sequence of natural numbers (a n) with the property that each sequence gives a unique real number and such that this real number belongs to the corresponding set if and ...