Search results
Results from the WOW.Com Content Network
The logarithmic decrement can be obtained e.g. as ln(x 1 /x 3).Logarithmic decrement, , is used to find the damping ratio of an underdamped system in the time domain.. The method of logarithmic decrement becomes less and less precise as the damping ratio increases past about 0.5; it does not apply at all for a damping ratio greater than 1.0 because the system is overdamped.
Print/export Download as PDF; Printable version; In other projects Wikimedia Commons; ... Logarithmic decrement; Logarithmic differentiation;
Download as PDF; Printable version; In other projects Wikidata item; Appearance. ... Decrement table; Logarithmic decrement; Increment and decrement operators; See also
Mantissa is a disambiguation page; see common logarithm for the traditional concept of mantissa; see significand for the modern concept used in computing. Matrix logarithm Mel scale
A logarithmic unit is a unit that can be used to express a quantity (physical or mathematical) on a logarithmic scale, that is, as being proportional to the value of a logarithm function applied to the ratio of the quantity and a reference quantity of the same type. The choice of unit generally indicates the type of quantity and the base of the ...
The logarithm is denoted "log b x" (pronounced as "the logarithm of x to base b", "the base-b logarithm of x", or most commonly "the log, base b, of x "). An equivalent and more succinct definition is that the function log b is the inverse function to the function x ↦ b x {\displaystyle x\mapsto b^{x}} .
A log–log plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).
One application of log structures is the ability to define logarithmic forms (also called differential forms with log poles) on any log scheme. From this, one can for instance define log-smoothness and log-étaleness, generalizing the notions of smooth morphisms and étale morphisms. This then allows the study of deformation theory.