Search results
Results from the WOW.Com Content Network
Introduction to Smooth Manifolds. Graduate Texts in Mathematics. Vol. 218 (Second ed.). New York London: Springer-Verlag. ISBN 978-1-4419-9981-8. OCLC 808682771. Introduction to Smooth Manifolds, Springer-Verlag, Graduate Texts in Mathematics, 2002, 2nd edition 2012 [6] Fredholm Operators and Einstein Metrics on Conformally Compact Manifolds.
In particular, if is a smooth manifold and is a smooth vector field, one is interested in finding integral curves to . More precisely, given p ∈ M {\displaystyle p\in M} one is interested in curves γ p : R → M {\displaystyle \gamma _{p}:\mathbb {R} \to M} such that:
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as smooth manifolds with a Riemannian metric (an inner product on the tangent space at each point that varies smoothly from point to point). This gives, in particular, local notions of angle, length of curves, surface area and volume.
Conversely, given any contact manifold M, the product M×R has a natural structure of a symplectic manifold. If α is a contact form on M, then ω = d(e t α) is a symplectic form on M×R, where t denotes the variable in the R-direction. This new manifold is called the symplectization (sometimes symplectification in the literature) of the ...
Let be a smooth manifold and let be a one-parameter family of Riemannian or pseudo-Riemannian metrics. Suppose that it is a differentiable family in the sense that for any smooth coordinate chart, the derivatives v i j = ∂ ∂ t ( ( g t ) i j ) {\displaystyle v_{ij}={\frac {\partial }{\partial t}}{\big (}(g_{t})_{ij}{\big )}} exist and are ...
Download as PDF; Printable version; In other projects Wikidata item; ... Pages in category "Smooth manifolds" The following 19 pages are in this category, out of 19 ...
In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold M using partial differential equations.The key observation is that, given a Riemannian metric on M, every cohomology class has a canonical representative, a differential form that vanishes under the Laplacian operator of the metric.
Symplectic manifolds arise from classical mechanics; in particular, they are a generalization of the phase space of a closed system. [1] In the same way the Hamilton equations allow one to derive the time evolution of a system from a set of differential equations, the symplectic form should allow one to obtain a vector field describing the flow of the system from the differential of a ...