enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Vector projection - Wikipedia

    en.wikipedia.org/wiki/Vector_projection

    The vector projection (also known as the vector component or vector resolution) of a vector a on (or onto) a nonzero vector b is the orthogonal projection of a onto a straight line parallel to b. The projection of a onto b is often written as proj b ⁡ a {\displaystyle \operatorname {proj} _{\mathbf {b} }\mathbf {a} } or a ∥ b .

  3. Homography (computer vision) - Wikipedia

    en.wikipedia.org/wiki/Homography_(computer_vision)

    is the rotation matrix by which b is rotated in relation to a; t is the translation vector from a to b; n and d are the normal vector of the plane and the distance from origin to the plane respectively. K a and K b are the cameras' intrinsic parameter matrices. The figure shows camera b looking at the plane at distance d.

  4. Homogeneous coordinates - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_coordinates

    Homogeneous coordinates are ubiquitous in computer graphics because they allow common vector operations such as translation, rotation, scaling and perspective projection to be represented as a matrix by which the vector is multiplied. By the chain rule, any sequence of such operations can be multiplied out into a single matrix, allowing simple ...

  5. 3D projection - Wikipedia

    en.wikipedia.org/wiki/3D_projection

    If the normal of the viewing plane (the camera direction) is parallel to one of the primary axes (which is the x, y, or z axis), the mathematical transformation is as follows; To project the 3D point , , onto the 2D point , using an orthographic projection parallel to the y axis (where positive y represents forward direction - profile view ...

  6. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  7. Stereographic projection - Wikipedia

    en.wikipedia.org/wiki/Stereographic_projection

    The plane z = 0 runs through the center of the sphere; the "equator" is the intersection of the sphere with this plane. For any point P on M, there is a unique line through N and P, and this line intersects the plane z = 0 in exactly one point P ′, known as the stereographic projection of P onto the plane.

  8. Orthographic projection - Wikipedia

    en.wikipedia.org/wiki/Orthographic_projection

    Orthographic projection (also orthogonal projection and analemma) [a] is a means of representing three-dimensional objects in two dimensions.Orthographic projection is a form of parallel projection in which all the projection lines are orthogonal to the projection plane, [2] resulting in every plane of the scene appearing in affine transformation on the viewing surface.

  9. Planar projection - Wikipedia

    en.wikipedia.org/wiki/Planar_projection

    Planar projections are the subset of 3D graphical projections constructed by linearly mapping points in three-dimensional space to points on a two-dimensional projection plane. The projected point on the plane is chosen such that it is collinear with the corresponding three-dimensional point and the centre of projection .