enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Slip (materials science) - Wikipedia

    en.wikipedia.org/wiki/Slip_(materials_science)

    Slip systems in zirconium alloys. 𝒃 and 𝒏 are the slip direction and plane, respectively, and 𝝎 is the rotation axis calculated in the present work, orthogonal to both the slip plane normal and slip direction. The crystal direction of the rotation axis vectors is labelled on the IPF colour key.

  3. Schmid's law - Wikipedia

    en.wikipedia.org/wiki/Schmid's_Law

    Schmid's Law states that the critically resolved shear stress (τ) is equal to the stress applied to the material (σ) multiplied by the cosine of the angle with the vector normal to the glide plane (φ) and the cosine of the angle with the glide direction (λ). Which can be expressed as: [2] =

  4. Slip bands in metals - Wikipedia

    en.wikipedia.org/wiki/Slip_bands_in_metals

    Dislocations are generated on a single slip plane They point out that a dislocation segment (Frank–Read source), lying in a slip plane and pinned at both ends, is a source of an unlimited number of dislocation loops. In this way the grouping of dislocations into an avalanche of a thousand or so loops on a single slip plane can be understood. [19]

  5. Critical resolved shear stress - Wikipedia

    en.wikipedia.org/wiki/Critical_resolved_shear_stress

    The Schmid Factor for an axial applied stress in the [] direction, along the primary slip plane of (), with the critical applied shear stress acting in the [] direction can be calculated by quickly determining if any of the dot product between the axial applied stress and slip plane, or dot product of axial applied stress and shear stress ...

  6. Frank–Read source - Wikipedia

    en.wikipedia.org/wiki/Frank–Read_source

    Consider a straight dislocation in a crystal slip plane with its two ends, A and B, pinned. If a shear stress τ {\displaystyle \tau } is exerted on the slip plane then a force F = τ ⋅ b x {\displaystyle F=\tau \cdot bx} , where b is the Burgers vector of the dislocation and x is the distance between the pinning sites A and B, is exerted on ...

  7. Cross slip - Wikipedia

    en.wikipedia.org/wiki/Cross_Slip

    The screw component of a mixed dislocation loop can move to another slip plane, called the cross-slip plane. Here the Burgers vector is along the intersection of the planes. In materials science, cross slip is the process by which a screw dislocation moves from one slip plane to another due to local stresses. It allows non-planar movement of ...

  8. Geometrically necessary dislocations - Wikipedia

    en.wikipedia.org/wiki/Geometrically_necessary...

    By comparing the orientation of the crystal lattice in the after-deformed configuration to the undeformed homogeneous sample, they were able to determine the in-plane lattice rotation and found it an order of magnitude larger than the out-of-plane lattice rotations, thus demonstrating the plane strain assumption.

  9. Plasticity (physics) - Wikipedia

    en.wikipedia.org/wiki/Plasticity_(physics)

    Notably, because independent slip systems are defined as slip planes on which dislocation migrations cannot be reproduced by any combination of dislocation migrations along other slip system’s planes, the number of geometrical slip systems for a given crystal system - which by definition can be constructed by slip system combinations - is ...