Search results
Results from the WOW.Com Content Network
The graph of a probability mass function. All the values of this function must be non-negative and sum up to 1. In probability and statistics, a probability mass function (sometimes called probability function or frequency function [1]) is a function that gives the probability that a discrete random variable is exactly equal to some value. [2]
Each entry in the table contains the frequency or count of the occurrences of values within a particular group or interval, and in this way, the table summarizes the distribution of values in the sample. This is an example of a univariate (=single variable) frequency table. The frequency of each response to a survey question is depicted.
CORDIC (coordinate rotation digital computer), Volder's algorithm, Digit-by-digit method, Circular CORDIC (Jack E. Volder), [1] [2] Linear CORDIC, Hyperbolic CORDIC (John Stephen Walther), [3] [4] and Generalized Hyperbolic CORDIC (GH CORDIC) (Yuanyong Luo et al.), [5] [6] is a simple and efficient algorithm to calculate trigonometric functions, hyperbolic functions, square roots ...
Frequency domain, polyphonic detection is possible, usually utilizing the periodogram to convert the signal to an estimate of the frequency spectrum [4].This requires more processing power as the desired accuracy increases, although the well-known efficiency of the FFT, a key part of the periodogram algorithm, makes it suitably efficient for many purposes.
The image sampling frequency is the repetition rate of the sensor integration period. Since the integration period may be significantly shorter than the time between repetitions, the sampling frequency can be different from the inverse of the sample time: 50 Hz – PAL video; 60 / 1.001 Hz ~= 59.94 Hz – NTSC video
For example, simple truncation of the sinc function will create severe ringing artifacts, which can be reduced using window functions that drop off more smoothly at the edges. [5] The Whittaker–Shannon interpolation formula describes how to use a perfect low-pass filter to reconstruct a continuous signal from a sampled digital signal.
Simply, in the continuous-time case, the function to be transformed is multiplied by a window function which is nonzero for only a short period of time. The Fourier transform (a one-dimensional function) of the resulting signal is taken, then the window is slid along the time axis until the end resulting in a two-dimensional representation of the signal.
In Pisarenko's method, only a single eigenvector is used to form the denominator of the frequency estimation function; and the eigenvector is interpreted as a set of autoregressive coefficients, whose zeros can be found analytically or with polynomial root finding algorithms. In contrast, MUSIC assumes that several such functions have been ...