enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Modified atmosphere - Wikipedia

    en.wikipedia.org/wiki/Modified_atmosphere

    [1] [2] The need for this technology for food arises from the short shelf life of food products such as meat, fish, poultry, and dairy in the presence of oxygen. In food, oxygen is readily available for lipid oxidation reactions. Oxygen also helps maintain high respiration rates of fresh produce, which contribute to shortened shelf life. [3]

  3. Hypoxia in fish - Wikipedia

    en.wikipedia.org/wiki/Hypoxia_in_fish

    A fish's hypoxia tolerance can be represented in different ways. A commonly used representation is the critical O 2 tension (P crit), which is the lowest water O 2 tension (P O 2) at which a fish can maintain a stable O 2 consumption rate (M O 2). [2]

  4. Oxygen transmission rate - Wikipedia

    en.wikipedia.org/wiki/Oxygen_transmission_rate

    Oxygen transmission rate (OTR) is the measurement of the amount of oxygen gas that passes through a substance over a given period. It is mostly carried out on non-porous materials, where the mode of transport is diffusion, but there are a growing number of applications where the transmission rate also depends on flow through apertures of some description.

  5. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    Aerobic respiration requires oxygen (O 2) in order to create ATP.Although carbohydrates, fats and proteins are consumed as reactants, aerobic respiration is the preferred method of pyruvate production in glycolysis, and requires pyruvate be transported the mitochondria in order to be oxidized by the citric acid cycle.

  6. Anaerobic respiration - Wikipedia

    en.wikipedia.org/wiki/Anaerobic_respiration

    Anaerobic cellular respiration and fermentation generate ATP in very different ways, and the terms should not be treated as synonyms. Cellular respiration (both aerobic and anaerobic) uses highly reduced chemical compounds such as NADH and FADH 2 (for example produced during glycolysis and the citric acid cycle) to establish an electrochemical gradient (often a proton gradient) across a membrane.

  7. Aerobic organism - Wikipedia

    en.wikipedia.org/wiki/Aerobic_organism

    Facultative anaerobes use oxygen if it is available, but also have anaerobic methods of energy production. [7] Microaerophiles require oxygen for energy production, but are harmed by atmospheric concentrations of oxygen (21% O 2). [6] Aerotolerant anaerobes do not use oxygen but are not harmed by it. [6]

  8. Facultative anaerobic organism - Wikipedia

    en.wikipedia.org/wiki/Facultative_anaerobic_organism

    For example, in the absence of oxygen, E. coli can use fumarate, nitrate, nitrite, dimethyl sulfoxide, or trimethylamine oxide as an electron acceptor. [11] This flexibility allows facultative anaerobes to survive in a number of environments, and in environments with frequently changing conditions.

  9. Histotoxic hypoxia - Wikipedia

    en.wikipedia.org/wiki/Histotoxic_hypoxia

    An example of histotoxic hypoxia is cyanide poisoning. There is a profound drop in tissue oxygen consumption since the reaction of oxygen with cytochrome oxidase is blocked by the presence of cyanide. Cyanide binds to the ferric ion on cytochrome oxidase a 3 and prevents the