Search results
Results from the WOW.Com Content Network
The term "repeated sequence" was first used by Roy John Britten and D. E. Kohne in 1968; they found out that more than half of the eukaryotic genomes were repetitive DNA through their experiments on reassociation of DNA. [5] Although the repetitive DNA sequences were conserved and ubiquitous, their biological role was yet unknown.
The C 0 t value is the product of C 0 (the initial concentration of DNA), t (time in seconds), and a constant that depends on the concentration of cations in the buffer. Repetitive DNA will renature at low C 0 t values, while complex and unique DNA sequences will renature at high C 0 t values. The fast renaturation of the repetitive DNA is ...
These repeated DNA sequences often range from a pair of nucleotides to a whole gene, while the proximity of the repeat sequences varies between widely dispersed and simple tandem arrays. [3] The short tandem repeat sequences may exist as just a few copies in a small region to thousands of copies dispersed all over the genome of most eukaryotes. [4]
A tract of repetitive DNA in which a motif of a few base pairs is tandemly repeated numerous times (e.g. 5 to 50 times) is referred to as microsatellite DNA. Thus direct repeat tandem sequences are a form of microsattelite DNA. The process of DNA mismatch repair plays a prominent role in the formation of direct trinucleotide repeat expansions. [2]
Minisatellites are a type of DNA tandem repeat sequence, meaning that the sequences repeat one after another without other sequences or nucleotides in between them. Minisatellites are characterized by a repeat sequence of about ten to one hundred nucleotides, and the number of times the sequence repeats varies from about five to fifty times.
Slipped strand mispairing (SSM, also known as replication slippage) is a mutation process which occurs during DNA replication. It involves denaturation and displacement of the DNA strands, resulting in mispairing of the complementary bases. Slipped strand mispairing is one explanation for the origin and evolution of repetitive DNA sequences. [1]
All tandem repeat arrays are classifiable as satellite DNA, a name originating from the fact that tandem DNA repeats, by nature of repeating the same nucleotide sequences repeatedly, have a unique ratio of the two possible nucleotide base pair combinations, conferring them a specific mass density that allows them to be separated from the rest of the genome with density-based laboratory ...
The repeats, or duplications, are typically 10–300 kb in length, and bear greater than 95% sequence identity. Though rare in most mammals, LCRs comprise a large portion of the human genome owing to a significant expansion during primate evolution. [1] In humans, chromosomes Y and 22 have the greatest proportion of SDs: 50.4% and 11.9% ...