enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Absolutely and completely monotonic functions and sequences

    en.wikipedia.org/wiki/Absolutely_and_completely...

    A function that is absolutely monotonic on [,) can be extended to a function that is not only analytic on the real line but is even the restriction of an entire function to the real line. The big Bernshtein theorem : A function f ( x ) {\displaystyle f(x)} that is absolutely monotonic on ( − ∞ , 0 ] {\displaystyle (-\infty ,0]} can be ...

  3. Monotonic function - Wikipedia

    en.wikipedia.org/wiki/Monotonic_function

    A function is unimodal if it is monotonically increasing up to some point (the mode) and then monotonically decreasing. When f {\displaystyle f} is a strictly monotonic function, then f {\displaystyle f} is injective on its domain, and if T {\displaystyle T} is the range of f {\displaystyle f} , then there is an inverse function on T ...

  4. Schwartz space - Wikipedia

    en.wikipedia.org/wiki/Schwartz_space

    A function in the Schwartz space is sometimes called a Schwartz function. A two-dimensional Gaussian function is an example of a rapidly decreasing function. Schwartz space is named after French mathematician Laurent Schwartz.

  5. Symmetric decreasing rearrangement - Wikipedia

    en.wikipedia.org/wiki/Symmetric_decreasing...

    The (nonsymmetric) decreasing rearrangement function arises often in the theory of rearrangement-invariant Banach function spaces. Especially important is the following: Luxemburg Representation Theorem. Let be a rearrangement-invariant Banach function norm over a resonant measure space (,).

  6. Discontinuities of monotone functions - Wikipedia

    en.wikipedia.org/wiki/Discontinuities_of...

    Then f is a non-decreasing function on [a, b], which is continuous except for jump discontinuities at x n for n ≥ 1. In the case of finitely many jump discontinuities, f is a step function. The examples above are generalised step functions; they are very special cases of what are called jump functions or saltus-functions. [8] [9]

  7. Monotone convergence theorem - Wikipedia

    en.wikipedia.org/wiki/Monotone_convergence_theorem

    In the mathematical field of real analysis, the monotone convergence theorem is any of a number of related theorems proving the good convergence behaviour of monotonic sequences, i.e. sequences that are non-increasing, or non-decreasing.

  8. Sigmoid function - Wikipedia

    en.wikipedia.org/wiki/Sigmoid_function

    Sigmoid functions have domain of all real numbers, with return (response) value commonly monotonically increasing but could be decreasing. Sigmoid functions most often show a return value (y axis) in the range 0 to 1. Another commonly used range is from −1 to 1.

  9. Concave function - Wikipedia

    en.wikipedia.org/wiki/Concave_function

    A differentiable function f is (strictly) concave on an interval if and only if its derivative function f ′ is (strictly) monotonically decreasing on that interval, that is, a concave function has a non-increasing (decreasing) slope.