Search results
Results from the WOW.Com Content Network
When the apex of the plant is removed, the inhibitory effect is removed and the growth of lateral buds is enhanced. This is called decapitation, usually performed in tea plantations and hedge-making. Auxin is sent to the part of the plant facing away from the light, where it promotes cell elongation, thus causing the plant to bend towards the ...
Plant physiologists have identified four different stages the plant goes through after the apex is removed (Stages I-IV). The four stages are referred to as lateral bud formation, "imposition of inhibition" (apical dominance), initiation of lateral bud outgrowth following decapitation, and; elongation and development of the lateral bud into a ...
Ethylene and auxin complement JA by influencing cell elongation and asymmetric growth, both critical for thigmomorphogenesis. Ethylene production increases in mechanically stimulated plants and is linked to radial expansion and stem thickening, traits that enhance structural stability against mechanical forces like wind.
Indole-3-acetic acid (IAA, 3-IAA) is the most common naturally occurring plant hormone of the auxin class. It is the best known of the auxins, and has been the subject of extensive studies by plant physiologists. [1] IAA is a derivative of indole, containing a carboxymethyl substituent. It is a colorless solid that is soluble in polar organic ...
Within the 20-year timespan, many scientists have actively contributed to examining and reevaluating Hager's acid-growth hypothesis. Despite the accumulation of observations that evidently identify the final target of the auxin-induced action to be H +-ATPase, which excretes H + protons to the apoplast and take in K + ions through its rectifying K + channel in the following years, the ...
Polar auxin transport (PAT) is directional and active flow of auxin molecules through the plant tissues. The flow of auxin molecules through the neighboring cells is driven by carriers (type of membrane transport protein) in the cell-to-cell fashion (from one cell to other cell and then to the next one) and the direction of the flow is determined by the localization of the carriers on the ...
To change this template's initial visibility, the |state= parameter may be used: {{List of systems of plant taxonomy | state = collapsed}} will show the template collapsed, i.e. hidden apart from its title bar. {{List of systems of plant taxonomy | state = expanded}} will show the template expanded, i.e. fully visible.
In plant biology, thigmotropism is a directional growth movement which occurs as a mechanosensory response to a touch stimulus. Thigmotropism is typically found in twining plants and tendrils, however plant biologists have also found thigmotropic responses in flowering plants and fungi. This behavior occurs due to unilateral growth inhibition. [1]