enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Rosenbrock methods - Wikipedia

    en.wikipedia.org/wiki/Rosenbrock_methods

    Rosenbrock methods for stiff differential equations are a family of single-step methods for solving ordinary differential equations. [ 1 ] [ 2 ] They are related to the implicit Runge–Kutta methods [ 3 ] and are also known as Kaps–Rentrop methods.

  3. Rosenbrock function - Wikipedia

    en.wikipedia.org/wiki/Rosenbrock_function

    In mathematical optimization, the Rosenbrock function is a non-convex function, introduced by Howard H. Rosenbrock in 1960, which is used as a performance test problem for optimization algorithms. [1] It is also known as Rosenbrock's valley or Rosenbrock's banana function. The global minimum is inside a long, narrow, parabolic-shaped flat ...

  4. Nelder–Mead method - Wikipedia

    en.wikipedia.org/wiki/Nelder–Mead_method

    Nelder–Mead (Downhill Simplex) explanation and visualization with the Rosenbrock banana function; John Burkardt: Nelder–Mead code in Matlab - note that a variation of the Nelder–Mead method is also implemented by the Matlab function fminsearch. Nelder-Mead optimization in Python in the SciPy library.

  5. Test functions for optimization - Wikipedia

    en.wikipedia.org/wiki/Test_functions_for...

    In applied mathematics, test functions, known as artificial landscapes, are useful to evaluate characteristics of optimization algorithms, such as convergence rate, precision, robustness and general performance.

  6. Exponential integrator - Wikipedia

    en.wikipedia.org/wiki/Exponential_integrator

    Exponential Rosenbrock methods were shown to be very efficient in solving large systems of stiff ordinary differential equations, usually resulted from spatial discretization of time dependent (parabolic) PDEs. These integrators are constructed based on a continuous linearization of (1) along the numerical solution

  7. Rosenbrock system matrix - Wikipedia

    en.wikipedia.org/wiki/Rosenbrock_system_matrix

    An interpretation of the Rosenbrock System Matrix as a Linear Fractional Transformation can be found in. [4] One of the first applications of the Rosenbrock form was the development of an efficient computational method for Kalman decomposition , which is based on the pivot element method.

  8. Quasi-Newton method - Wikipedia

    en.wikipedia.org/wiki/Quasi-Newton_method

    In numerical analysis, a quasi-Newton method is an iterative numerical method used either to find zeroes or to find local maxima and minima of functions via an iterative recurrence formula much like the one for Newton's method, except using approximations of the derivatives of the functions in place of exact derivatives.

  9. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    Gradient descent can also be used to solve a system of nonlinear equations. Below is an example that shows how to use the gradient descent to solve for three unknown variables, x 1, x 2, and x 3. This example shows one iteration of the gradient descent. Consider the nonlinear system of equations