Search results
Results from the WOW.Com Content Network
In geometry, a uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent, and the polyhedron has a high degree of reflectional and rotational symmetry.
The relations can be made apparent by examining the vertex figures obtained by listing the faces adjacent to each vertex (remember that for uniform polyhedra all vertices are the same, that is vertex-transitive). For example, the cube has vertex figure 4.4.4, which is to say, three adjacent square faces.
Download as PDF; Printable version; In other projects ... The dihedral angles for the edge-transitive polyhedra are: Picture ... This page was last edited on 24 ...
In geometry, a vertex configuration is a shorthand notation for representing a polyhedron or tiling as the sequence of faces around a vertex. It has variously been called a vertex description , [ 1 ] [ 2 ] [ 3 ] vertex type , [ 4 ] [ 5 ] vertex symbol , [ 6 ] [ 7 ] vertex arrangement , [ 8 ] vertex pattern , [ 9 ] face-vector, [ 10 ] vertex ...
Vertex, edge and face of a cube. The Euler characteristic χ was classically defined for the surfaces of polyhedra, according to the formula = + where V, E, and F are respectively the numbers of vertices (corners), edges and faces in the given polyhedron. [2] Any convex polyhedron's surface has Euler characteristic
If one relaxes the requirement that the graph be cubic, there are much smaller non-Hamiltonian polyhedral graphs. The graph with the fewest vertices and edges is the 11-vertex and 18-edge Herschel graph, [4] and there also exists an 11-vertex non-Hamiltonian polyhedral graph in which all faces are triangles, the Goldner–Harary graph. [5]
The smallest polyhedron is the tetrahedron with 4 triangular faces, 6 edges, and 4 vertices. Named polyhedra primarily come from the families of platonic solids, Archimedean solids, Catalan solids, and Johnson solids, as well as dihedral symmetry families including the pyramids, bipyramids, prisms, antiprisms, and trapezohedrons.
The illustration here shows the vertex figure (red) of the cuboctahedron being used to derive the corresponding face (blue) of the rhombic dodecahedron.. For a uniform polyhedron, each face of the dual polyhedron may be derived from the original polyhedron's corresponding vertex figure by using the Dorman Luke construction. [2]