Search results
Results from the WOW.Com Content Network
A module is called flat if taking the tensor product of it with any exact sequence of R-modules preserves exactness. Torsionless A module is called torsionless if it embeds into its algebraic dual. Simple A simple module S is a module that is not {0} and whose only submodules are {0} and S. Simple modules are sometimes called irreducible. [5 ...
In linear algebra, a linear relation, or simply relation, between elements of a vector space or a module is a linear equation that has these elements as a solution.. More precisely, if , …, are elements of a (left) module M over a ring R (the case of a vector space over a field is a special case), a relation between , …, is a sequence (, …,) of elements of R such that
In mathematics, a free module is a module that has a basis, that is, a generating set that is linearly independent.Every vector space is a free module, [1] but, if the ring of the coefficients is not a division ring (not a field in the commutative case), then there exist non-free modules.
Time-keeping on this clock uses arithmetic modulo 12. Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus.
A module that has a basis is called a free module. Free modules play a fundamental role in module theory, as they may be used for describing the structure of non-free modules through free resolutions. A module over the integers is exactly the same thing as an abelian group. Thus a free module over the integers is also a free abelian group.
More generally, the PBW theorem as formulated above extends to cases such as where (1) L is a flat K-module, (2) L is torsion-free as an abelian group, (3) L is a direct sum of cyclic modules (or all its localizations at prime ideals of K have this property), or (4) K is a Dedekind domain. See, for example, the 1969 paper by Higgins for these ...
In six-dimensional Euclidean geometry, the quarter 6-cubic honeycomb is a uniform space-filling tessellation (or honeycomb). It has half the vertices of the 6-demicubic honeycomb, and a quarter of the vertices of a 6-cube honeycomb. [1] Its facets are 6-demicubes, stericated 6-demicubes, and {3,3}×{3,3} duoprisms.
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.