Search results
Results from the WOW.Com Content Network
In deriving the Schwarzschild metric, it was assumed that the metric was vacuum, spherically symmetric and static. The static assumption is unneeded, as Birkhoff's theorem states that any spherically symmetric vacuum solution of Einstein's field equations is stationary; the Schwarzschild solution thus follows
Johannes Droste in 1916 [11] independently produced the same solution as Schwarzschild, using a simpler, more direct derivation. [12] In the early years of general relativity there was a lot of confusion about the nature of the singularities found in the Schwarzschild and other solutions of the Einstein field equations. In Schwarzschild's ...
The first is a zero stress energy solution describing a black hole in empty space time, the second (with b positive) describes de Sitter space with a stress-energy of a positive cosmological constant of magnitude 3b. Superposing the two solutions gives the de Sitter–Schwarzschild solution:
The Schwarzschild radius was named after the German astronomer Karl Schwarzschild, who calculated this exact solution for the theory of general relativity in 1916. The Schwarzschild radius is given as r s = 2 G M c 2 , {\displaystyle r_{\text{s}}={\frac {2GM}{c^{2}}},} where G is the gravitational constant , M is the object mass, and c is the ...
In Einstein's theory of general relativity, the interior Schwarzschild metric (also interior Schwarzschild solution or Schwarzschild fluid solution) is an exact solution for the gravitational field in the interior of a non-rotating spherical body which consists of an incompressible fluid (implying that density is constant throughout the body) and has zero pressure at the surface.
The solution was proposed independently by Paul Painlevé in 1921 [1] and Allvar Gullstrand [2] in 1922. It was not explicitly shown that these solutions were simply coordinate transformations of the usual Schwarzschild solution until 1933 in Lemaître's paper, [3] although Einstein immediately believed that to be true.
See Deriving the Schwarzschild solution for a more detailed derivation of this expression. Depending on context, it may be appropriate to regard a and b as undetermined functions of the radial coordinate (for example, in deriving an exact static spherically symmetric solution of the Einstein field equation). Alternatively, we can plug in ...
Schwarzschild solution in Schwarzschild coordinates, with two space dimensions suppressed, leaving just the time t and the distance from the center r. In red the incoming null geodesics. In blue outcoming null geodesics. In green the null light cones on which borders light moves, while massive objects move inside the cones.