Search results
Results from the WOW.Com Content Network
Clicking any tile on the central axis of the board where (x, y) = (tileMapWidth / 2, y), will produce the same tile value for both world-x and world-y which in this example is 3 (0 indexed). Selecting the tile that lies one position on the right on the virtual grid, actually moves one tile less on the world-y and one tile more on the world-x.
Often this is an isosceles triangle of height 1 and base 2 in which case it is referred to as the triangular function. Triangular functions are useful in signal processing and communication systems engineering as representations of idealized signals, and the triangular function specifically as an integral transform kernel function from which ...
One way to draw using an oblique view is to draw the side of the object in two dimensions, i.e. flat, and then draw the other sides at an angle of 45°, but instead of drawing the sides full size they are only drawn with half the depth creating 'forced depth' – adding an element of realism to the object.
In astronomy, the angular size or angle subtended by the image of a distant object is often only a few arcseconds (denoted by the symbol ″), so it is well suited to the small angle approximation. [6] The linear size (D) is related to the angular size (X) and the distance from the observer (d) by the simple formula:
By rotating the cube by 45° on the x-axis, the point (1, 1, 1) will therefore become (1, 0, √ 2) as depicted in the diagram. The second rotation aims to bring the same point on the positive z-axis and so needs to perform a rotation of value equal to the arctangent of 1 ⁄ √ 2 which is approximately 35.264°.
In terms of rotations, this loop represents a continuous sequence of rotations about the z-axis starting (by example) at the identity (center of the ball), through the south pole, jumping to the north pole and ending again at the identity rotation (i.e., a series of rotation through an angle φ where φ runs from 0 to 2 π).
A NURBS curve. (See also: the animated creation of a NURBS spline.) A NURBS surface. Non-uniform rational basis spline (NURBS) is a mathematical model using basis splines (B-splines) that is commonly used in computer graphics for representing curves and surfaces.
The mathematical basis for Bézier curves—the Bernstein polynomials—was established in 1912, but the polynomials were not applied to graphics until some 50 years later when mathematician Paul de Casteljau in 1959 developed de Casteljau's algorithm, a numerically stable method for evaluating the curves, and became the first to apply them to computer-aided design at French automaker Citroën ...