enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Collatz conjecture - Wikipedia

    en.wikipedia.org/wiki/Collatz_conjecture

    For even numbers, divide by 2; ... the sequence 12, 6, 3, 10, 5, 16, 8, 4, 2, 1 . The number n = 19 takes longer ... it takes to get to one for the first 100 million ...

  3. Singly and doubly even - Wikipedia

    en.wikipedia.org/wiki/Singly_and_doubly_even

    A singly even number can be divided by 2 only once; it is even but its quotient by 2 is odd. A doubly even number is an integer that is divisible more than once by 2; it is even and its quotient by 2 is also even. The separate consideration of oddly and evenly even numbers is useful in many parts of mathematics, especially in number theory ...

  4. Parity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Parity_(mathematics)

    Cuisenaire rods: 5 (yellow) cannot be evenly divided in 2 (red) by any 2 rods of the same color/length, while 6 (dark green) can be evenly divided in 2 by 3 (lime green). In mathematics, parity is the property of an integer of whether it is even or odd. An integer is even if it is divisible by 2, and odd if it is not. [1]

  5. Goldbach's conjecture - Wikipedia

    en.wikipedia.org/wiki/Goldbach's_conjecture

    Thus if n is a large even integer and m is a number between 3 and ⁠ n / 2 ⁠, then one might expect the probability of m and n − m simultaneously being prime to be ⁠ 1 / ln m ln(n − m) ⁠. If one pursues this heuristic, one might expect the total number of ways to write a large even integer n as the sum of two odd primes to be roughly

  6. Basel problem - Wikipedia

    en.wikipedia.org/wiki/Basel_problem

    The Basel problem is a problem in mathematical analysis with relevance to number theory, concerning an infinite sum of inverse squares.It was first posed by Pietro Mengoli in 1650 and solved by Leonhard Euler in 1734, [1] and read on 5 December 1735 in The Saint Petersburg Academy of Sciences. [2]

  7. Mathematical fallacy - Wikipedia

    en.wikipedia.org/wiki/Mathematical_fallacy

    In mathematics, certain kinds of mistaken proof are often exhibited, and sometimes collected, as illustrations of a concept called mathematical fallacy.There is a distinction between a simple mistake and a mathematical fallacy in a proof, in that a mistake in a proof leads to an invalid proof while in the best-known examples of mathematical fallacies there is some element of concealment or ...

  8. Double factorial - Wikipedia

    en.wikipedia.org/wiki/Double_factorial

    The final expression is defined for all complex numbers except the negative even integers and satisfies (z + 2)!! = (z + 2) · z!! everywhere it is defined. As with the gamma function that extends the ordinary factorial function, this double factorial function is logarithmically convex in the sense of the Bohr–Mollerup theorem .

  9. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    This implies that three does not divide u and that the two factors are cubes of two smaller numbers, r and s. 2u = r 3 u 2 + 3v 2 = s 3. Since u 2 + 3v 2 is odd, so is s. A crucial lemma shows that if s is odd and if it satisfies an equation s 3 = u 2 + 3v 2, then it can be written in terms of two integers e and f. s = e 2 + 3f 2. so that u = e ...