Search results
Results from the WOW.Com Content Network
Aldehyde structure. In organic chemistry, an aldehyde (/ ˈ æ l d ɪ h aɪ d /) is an organic compound containing a functional group with the structure R−CH=O. [1] The functional group itself (without the "R" side chain) can be referred to as an aldehyde but can also be classified as a formyl group. Aldehydes are a common motif in many ...
Common name for alcohol Common name for aldehyde Common name for acid Common name for ketone 1: Meth-Methyl alcohol (wood alcohol) Formaldehyde: Formic acid NA 2: Eth-Ethyl alcohol (grain alcohol) Acetaldehyde: Acetic acid (vinegar) NA 3: Prop-Propyl alcohol: Propionaldehyde: Propionic acid Acetone/dimethyl ketone 4: But-Butyl alcohol ...
The use of aldehyde in the name comes from its history: aldehydes are more reactive than ketones, so that the reaction was discovered first with them. [2] [3] [4] The aldol reaction is paradigmatic in organic chemistry and one of the most common means of forming carbon–carbon bonds in organic chemistry.
A major factor in determining the reactivity of acyl derivatives is leaving group ability, which is related to acidity. Weak bases are better leaving groups than strong bases; a species with a strong conjugate acid (e.g. hydrochloric acid) will be a better leaving group than a species with a weak conjugate acid (e.g. acetic acid).
Acetaldehyde (IUPAC systematic name ethanal) is an organic chemical compound with the formula CH 3 CH=O, sometimes abbreviated as MeCH=O. It is a colorless liquid or gas, boiling near room temperature. It is one of the most important aldehydes, occurring widely in nature and being
Simple mechanism for base-catalyzed aldol reaction of an aldehyde with itself. Base-catalyzed dehydration. Simple mechanism for the dehydration of an aldol product. Although only a catalytic amount of base is required in some cases, the more usual procedure is to use a stoichiometric amount of a strong base such as LDA or NaHMDS. In this case ...
The new pi bond then acts as a nucleophile and attacks the remaining aldehyde in the solution, resulting in the formation of a new C–C bond and regeneration of the base catalyst. In the second part of the reaction, the presence of base leads to elimination of water and formation of a new C–C pi bond.
The carbon atom has two additional single bonds. [1] [2] Imines are common in synthetic and naturally occurring compounds and they participate in many reactions. [3] Distinction is sometimes made between aldimines and ketimines, derived from aldehydes and ketones, respectively.