Search results
Results from the WOW.Com Content Network
Allosteric regulation of an enzyme. In the fields of biochemistry and pharmacology an allosteric regulator (or allosteric modulator) is a substance that binds to a site on an enzyme or receptor distinct from the active site, resulting in a conformational change that alters the protein's activity, either enhancing or inhibiting its function.
Allosteric enzymes need not be oligomers as previously thought, [1] and in fact many systems have demonstrated allostery within single enzymes. [2] In biochemistry , allosteric regulation (or allosteric control ) is the regulation of a protein by binding an effector molecule at a site other than the enzyme's active site .
Positive control elements that bind to DNA and incite higher levels of transcription. [ 3 ] While these means of transcriptional regulation also exist in eukaryotes, the transcriptional landscape is significantly more complicated both by the number of proteins involved as well as by the presence of introns and the packaging of DNA into histones .
This is a diagram of allosteric regulation of an enzyme. When inhibitor binds to the allosteric site the shape of active site is altered, so substrate cannot fit into it. An allosteric site is a site on an enzyme, unrelated to its active site, which can bind an effector molecule. This interaction is another mechanism of enzyme regulation.
Phosphofructokinase-1 (PFK-1) is one of the most important regulatory enzymes (EC 2.7.1.11) of glycolysis. It is an allosteric enzyme made of 4 subunits and controlled by many activators and inhibitors. PFK-1 catalyzes the important "committed" step of glycolysis, the conversion of fructose 6-phosphate and ATP to fructose 1,6-bisphosphate and ...
Glucose-6-phosphate dehydrogenase is the rate-controlling enzyme of this pathway [citation needed]. It is allosterically stimulated by NADP + and strongly inhibited by NADPH. [7] The ratio of NADPH:NADP + is the primary mode of regulation for the enzyme and is normally about 100:1 in liver cytosol [citation needed]. This makes the cytosol a ...
Class IB reductases are not inhibited by dATP because they lack approximately 50 N-terminal amino acids required for the allosteric activity site. [23] Additionally, it is important that the activity of ribonucleotide reductase be under transcriptional and post-transcriptional control because the synthesis of damage-free DNA relies on a ...
This is important because DNA is wrapped around histones, and DNA expression is regulated by acetylation and de-acetylation. HDAC's action is opposite to that of histone acetyltransferase . HDAC proteins are now also called lysine deacetylases (KDAC), to describe their function rather than their target, which also includes non-histone proteins ...