Search results
Results from the WOW.Com Content Network
Programming languages or their standard libraries that support multi-dimensional arrays typically have a native row-major or column-major storage order for these arrays. Row-major order is used in C / C++ / Objective-C (for C-style arrays), PL/I , [ 4 ] Pascal , [ 5 ] Speakeasy , [ citation needed ] and SAS .
Array programming primitives concisely express broad ideas about data manipulation. The level of concision can be dramatic in certain cases: it is not uncommon [example needed] to find array programming language one-liners that require several pages of object-oriented code.
This problem can be seen as a generalization of the linear assignment problem. [2] In words, the problem can be described as follows: An instance of the problem has a number of agents (i.e., cardinality parameter) and a number of job characteristics (i.e., dimensionality parameter) such as task, machine, time interval, etc. For example, an ...
The base index of an array can be freely chosen. Usually programming languages allowing n-based indexing also allow negative index values and other scalar data types like enumerations, or characters may be used as an array index. Using zero based indexing is the design choice of many influential programming languages, including C, Java and Lisp ...
IMSL Numerical Libraries are libraries of numerical analysis functionality implemented in standard programming languages like C, Java, C# .NET, Fortran, and Python. The NAG Library is a collection of mathematical and statistical routines for multiple programming languages (C, C++, Fortran, Visual Basic, Java, Python and C#) and packages (MATLAB ...
Structure of arrays (SoA) is a layout separating elements of a record (or 'struct' in the C programming language) into one parallel array per field. [1] The motivation is easier manipulation with packed SIMD instructions in most instruction set architectures, since a single SIMD register can load homogeneous data, possibly transferred by a wide internal datapath (e.g. 128-bit).
In mathematical terms, an associative array is a function with finite domain. [1] It supports 'lookup', 'remove', and 'insert' operations. The dictionary problem is the classic problem of designing efficient data structures that implement associative arrays. [2] The two major solutions to the dictionary problem are hash tables and search trees.
In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x) will result in an array y whose elements are sine of the corresponding elements of the array x. Vectorized index operations are also supported.