Search results
Results from the WOW.Com Content Network
In particle physics, proton decay is a hypothetical form of particle decay in which the proton decays into lighter subatomic particles, such as a neutral pion and a positron. [1] The proton decay hypothesis was first formulated by Andrei Sakharov in 1967. Despite significant experimental effort, proton decay has never been observed.
IMB detected fast-moving particles such as those produced by proton decay or neutrino interactions by picking up the Cherenkov radiation generated when such a particle moves faster than light's speed in water. Since directional information was available from the phototubes, IMB was able to estimate the initial direction of neutrinos.
Proton emission (also known as proton radioactivity) is a rare type of radioactive decay in which a proton is ejected from a nucleus.Proton emission can occur from high-lying excited states in a nucleus following a beta decay, in which case the process is known as beta-delayed proton emission, or can occur from the ground state (or a low-lying isomer) of very proton-rich nuclei, in which case ...
In particle physics, particle decay is the spontaneous process of one unstable subatomic particle transforming into multiple other particles. The particles created in this process (the final state ) must each be less massive than the original, although the total mass of the system must be conserved.
Beta decay: beta particle is emitted from an atomic nucleus Compton scattering: scattering of a photon by a charged particle Neutrino-less double beta decay: If neutrinos are Majorana fermions (that is, their own antiparticle), Neutrino-less double beta decay is possible. Several experiments are searching for this. Pair production and annihilation
The estimated time for all nucleons in the observable universe to decay, if the hypothesized proton half-life takes the largest possible value of 10 41 years, [9] assuming that the Big Bang was inflationary and that the same process that made baryons predominate over anti-baryons in the early universe makes protons decay. By this time, if ...
Beta decay transforms a neutron into proton or vice versa. When a neutron inside a parent nuclide decays to a proton, an electron, a anti-neutrino, and nuclide with high atomic number results. When a proton in a parent nuclide transforms to a neutron, a positron, a neutrino, and nuclide with a lower atomic number results. These changes are a ...
The Harari–Shupe preon model (also known as rishon model, RM) is the earliest effort to develop a preon model to explain the phenomena appearing in the Standard Model (SM) of particle physics. [1]