Search results
Results from the WOW.Com Content Network
Like the pentose phosphate pathway, these pathways are related to parts of glycolysis. [3] Another carbon metabolism-related pathway involved in the generation of NADPH is the mitochondrial folate cycle, which uses principally serine as a source of one-carbon units to sustain nucleotide synthesis and redox homeostasis in mitochondria.
In contrast, the main function of NADPH is as a reducing agent in anabolism, with this coenzyme being involved in pathways such as fatty acid synthesis and photosynthesis. Since NADPH is needed to drive redox reactions as a strong reducing agent, the NADP + /NADPH ratio is kept very low. [62]
The chemical pathway of oxygenic photosynthesis fixes carbon in two stages: the light-dependent reactions and the light-independent reactions.. The light-dependent reactions capture light energy to transfer electrons from water and convert NADP +, ADP, and inorganic phosphate into the energy-storage molecules NADPH and ATP.
Photosynthesis usually refers to oxygenic photosynthesis, a process that produces oxygen. Photosynthetic organisms store the chemical energy so produced within intracellular organic compounds (compounds containing carbon) like sugars, glycogen , cellulose and starches .
The pentose phosphate pathway. The pentose phosphate pathway (also called the phosphogluconate pathway and the hexose monophosphate shunt or HMP shunt) is a metabolic pathway parallel to glycolysis. [1] It generates NADPH and pentoses (five-carbon sugars) as well as ribose 5-phosphate, a precursor for the synthesis of nucleotides. [1]
This word is taken from two Greek words, photos, which means light, and synthesis, which in chemistry means making a substance by combining simpler substances. So, in the presence of light, synthesis of food is called 'photosynthesis'. Noncyclic photophosphorylation through light-dependent reactions of photosynthesis at the thylakoid membrane.
The main carboxylating enzyme in C 3 photosynthesis is called RuBisCO, which catalyses two distinct reactions using either CO 2 (carboxylation) or oxygen (oxygenation) as a substrate. RuBisCO oxygenation gives rise to phosphoglycolate , which is toxic and requires the expenditure of energy to recycle through photorespiration .
During C 4 photosynthesis, an evolved pathway to increase localized CO 2 concentrations under the threat of enhanced photorespiration, CO 2 is captured within mesophyll cells, fixed as oxaloacetate, converted into malate and released internally within bundle sheath cells to directly feed RuBisCO activity. [9]