Search results
Results from the WOW.Com Content Network
The same vector can be represented in two different bases (purple and red arrows). In mathematics, a set B of vectors in a vector space V is called a basis (pl.: bases) if every element of V may be written in a unique way as a finite linear combination of elements of B.
A basis (or reference frame) of a (universal) algebra is a function that takes some algebra elements as values () and satisfies either one of the following two equivalent conditions. Here, the set of all b ( i ) {\displaystyle b(i)} is called the basis set , whereas several authors call it the "basis".
In mathematics, an ordered basis of a vector space of finite dimension n allows representing uniquely any element of the vector space by a coordinate vector, which is a sequence of n scalars called coordinates.
Algebra is the branch of mathematics that studies certain abstract systems, known as algebraic structures, and the manipulation of expressions within those systems. It is a generalization of arithmetic that introduces variables and algebraic operations other than the standard arithmetic operations, such as addition and multiplication.
The association of a dual basis with a basis gives a map from the space of bases of V to the space of bases of V ∗, and this is also an isomorphism. For topological fields such as the real numbers, the space of duals is a topological space , and this gives a homeomorphism between the Stiefel manifolds of bases of these spaces.
In mathematics, a basis function is an element of a particular basis for a function space. Every function in the function space can be represented as a linear combination of basis functions, just as every vector in a vector space can be represented as a linear combination of basis vectors .
In mathematics, particularly linear algebra, an orthogonal basis for an inner product space is a basis for whose vectors are mutually orthogonal. If the vectors of an orthogonal basis are normalized , the resulting basis is an orthonormal basis .
In mathematics, a canonical basis is a basis of an algebraic structure that is canonical in a sense that depends on the precise context: In a coordinate space , and more generally in a free module , it refers to the standard basis defined by the Kronecker delta .