Search results
Results from the WOW.Com Content Network
Isobars are atoms of different chemical elements that have the same number of nucleons. Correspondingly, isobars differ in atomic number (or number of protons ) but have the same mass number . An example of a series of isobars is 40 S , 40 Cl , 40 Ar , 40 K , and 40 Ca .
Isobars are nuclides having the same mass number (i.e. sum of protons plus neutrons): e.g. carbon-12 and boron-12. Nuclear isomers are different excited states of the same type of nucleus. A transition from one isomer to another is accompanied by emission or absorption of a gamma ray, or the process of internal conversion.
Isobar may refer to: Isobar (meteorology), a line connecting points of equal atmospheric pressure reduced to sea level on the maps. Isobaric process, a process taking place at constant pressure; Isobar (nuclide), one of multiple nuclides with the same mass but with different numbers of protons (or, equivalently, different numbers of neutrons).
Visualization of a (fictive) formation of isotherms (red-orange) and isobars (blue) in a baroclinic atmospheric layering. A rotating tank experiment modelling baroclinic eddies in the atmosphere In fluid dynamics , the baroclinity (often called baroclinicity ) of a stratified fluid is a measure of how misaligned the gradient of pressure is from ...
The Mattauch isobar rule, formulated by Josef Mattauch in 1934, states that if two adjacent elements on the periodic table have isotopes of the same mass number, one of the isotopes must be radioactive. [1] [2] Two nuclides that have the same mass number can both be stable only if their atomic numbers differ by more than one.
Beta-decay stable isobars are the set of nuclides which cannot undergo beta decay, that is, the transformation of a neutron to a proton or a proton to a neutron within the nucleus. A subset of these nuclides are also stable with regards to double beta decay or theoretically higher simultaneous beta decay, as they have the lowest energy of all ...
The different electron states which exist in an atom are usually described by atomic orbital notation, as is used in chemistry and general physics. However, X-ray science has special terminology to describe the transition of electrons from upper to lower energy levels: traditional Siegbahn notation, or alternatively, simplified X-ray notation.
In physics, mirror nuclei are a pair of isobars of two different elements where the number of protons of isobar one (Z 1) equals the number of neutrons of isobar two (N 2) and the number of protons of isotope two (Z 2) equals the number of neutrons in isotope one (N 1); in short: Z 1 = N 2 and Z 2 = N 1.