Search results
Results from the WOW.Com Content Network
The entries form the main diagonal of a square matrix. For instance, the main diagonal of the 4×4 matrix above contains the elements a 11 = 9, a 22 = 11, a 33 = 4, a 44 = 10. In mathematics, a square matrix is a matrix with the same number of rows and columns. An n-by-n matrix is known as a square matrix of order .
Thus the square roots of A are given by VD 1/2 V −1, where D 1/2 is any square root matrix of D, which, for distinct eigenvalues, must be diagonal with diagonal elements equal to square roots of the diagonal elements of D; since there are two possible choices for a square root of each diagonal element of D, there are 2 n choices for the ...
A square matrix is a matrix with the same number of rows and columns. [5] An n-by-n matrix is known as a square matrix of order n. Any two square matrices of the same order can be added and multiplied. The entries a ii form the main diagonal of a square matrix. They lie on the imaginary line that runs from the top left corner to the bottom ...
In linear algebra, the adjugate or classical adjoint of a square matrix A, adj(A), is the transpose of its cofactor matrix. [1] [2] It is occasionally known as adjunct matrix, [3] [4] or "adjoint", [5] though that normally refers to a different concept, the adjoint operator which for a matrix is the conjugate transpose.
There are various equivalent ways to define the determinant of a square matrix A, i.e. one with the same number of rows and columns: the determinant can be defined via the Leibniz formula, an explicit formula involving sums of products of certain entries of the matrix. The determinant can also be characterized as the unique function depending ...
A square matrix derived by applying an elementary row operation to the identity matrix. Equivalent matrix: A matrix that can be derived from another matrix through a sequence of elementary row or column operations. Frobenius matrix: A square matrix in the form of an identity matrix but with arbitrary entries in one column below the main diagonal.
If instead A is a complex square matrix, then there is a decomposition A = QR where Q is a unitary matrix (so the conjugate transpose † =). If A has n linearly independent columns, then the first n columns of Q form an orthonormal basis for the column space of A .
In linear algebra, Cramer's rule is an explicit formula for the solution of a system of linear equations with as many equations as unknowns, valid whenever the system has a unique solution. It expresses the solution in terms of the determinants of the (square) coefficient matrix and of matrices obtained from it by replacing one column by the ...