enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Schwarzschild coordinates - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_coordinates

    In the theory of Lorentzian manifolds, spherically symmetric spacetimes admit a family of nested round spheres.In such a spacetime, a particularly important kind of coordinate chart is the Schwarzschild chart, a kind of polar spherical coordinate chart on a static and spherically symmetric spacetime, which is adapted to these nested round spheres.

  3. Isotropic coordinates - Wikipedia

    en.wikipedia.org/wiki/Isotropic_coordinates

    The defining characteristic of an isotropic chart is that its radial coordinate (which is different from the radial coordinate of a Schwarzschild chart) is defined so that light cones appear round. This means that (except in the trivial case of a locally flat manifold), the angular isotropic coordinates do not faithfully represent distances ...

  4. Schwarzschild metric - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_metric

    The Schwarzschild solution, taken to be valid for all r > 0, is called a Schwarzschild black hole. It is a perfectly valid solution of the Einstein field equations, although (like other black holes) it has rather bizarre properties. For r < r s the Schwarzschild radial coordinate r becomes timelike and the time coordinate t becomes spacelike. [22]

  5. Gullstrand–Painlevé coordinates - Wikipedia

    en.wikipedia.org/wiki/Gullstrand–Painlevé...

    Gullstrand–Painlevé coordinates are a particular set of coordinates for the Schwarzschild metric – a solution to the Einstein field equations which describes a black hole. The ingoing coordinates are such that the time coordinate follows the proper time of a free-falling observer who starts from far away at zero velocity, and the spatial ...

  6. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    An orthonormal inertial frame is a coordinate chart such that, at the origin, one has the relations = and = (but these may not hold at other points in the frame). These coordinates are also called normal coordinates.

  7. Kruskal–Szekeres coordinates - Wikipedia

    en.wikipedia.org/wiki/Kruskal–Szekeres_coordinates

    The transformation between Schwarzschild coordinates and Kruskal–Szekeres coordinates defined for r > 2GM and < < can be extended, as an analytic function, at least to the first singularity which occurs at =. Thus the above metric is a solution of Einstein's equations throughout this region.

  8. Derivation of the Schwarzschild solution - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the...

    Working in a coordinate chart with coordinates (,,,) labelled 1 to 4 respectively, we begin with the metric in its most general form (10 independent components, each of which is a smooth function of 4 variables). The solution is assumed to be spherically symmetric, static and vacuum.

  9. Lemaître coordinates - Wikipedia

    en.wikipedia.org/wiki/Lemaître_coordinates

    The time coordinate used in the Lemaître coordinates is identical to the "raindrop" time coordinate used in the Gullstrand–Painlevé coordinates. The other three: the radial and angular coordinates r , θ , ϕ {\displaystyle r,\theta ,\phi } of the Gullstrand–Painlevé coordinates are identical to those of the Schwarzschild chart.